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One of the key components of the Standard Model is the relationship be-
tween symmetries (of the Lagrangian density) and interactions between the
particles. As we will see, the hints of this connection are already present in
classical physics, but it is only in quantum mechanics that one can “derive”
interactions from a symmetry principle. We will also consider non-Abelian
symmetries, which have no classical counterpart, and finish with the problem
of particle masses.

1 Gauge transformations and symmetry groups

1.1 Classical electromagnetism

The classical Lagrangian for an otherwise free particle of charge Q in an
electromagnetic (EM) field is

L =
1

2
mẋ2 +Qẋ ·A−QΦ. (1)

Exercise 1: Apply the appropriate Euler-Lagrange equation to Equa-
tion (1) and compare the result with Maxwell’s equations to verify this
assertion. Hint: Remember that A and Φ are functions of x. A small
amount of vector calculus is required.

Exercise 2: Calculate the canonical momentum and energy associated
with Equation (1). You may assume the following definitions:

p =
∂L

∂ẋ
and H = p · ẋ− L, (2)

where the Hamiltonian H describes the canonical energy.

In the last exercise, you should find that the canonical momentum and
energy are not simply mẋ and 1

2mẋ
2. Instead, they have additional con-

tributions from the electromagnetic potentials Φ and A. Physically, these
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contributions can be understood as arising from the EM field itself, while
maintaining that the total energy and momentum of the system (particle and
field together) must be conserved. Formally, we can recover the particle’s
physical energy and momentum from the canonical variables by subtracting
these extra contributions:

pphys. = mẋ = p−QA,

and Ephys. =
1

2
mẋ2 = H −QΦ. (3)

You will recall from your course lectures on electromagnetism that phys-
ical observables (including pphys. and Ephys.) are unaffected by the following
gauge transformation, where χ is an arbitrary function of space and time:

Φ→ Φ′ = Φ− ∂χ

∂t
; A→ A′ = A+∇χ. (4)

Upon inspection of Equation (3), it is therefore clear that the canonical
variables p and H must change under this transformation. In other words,
the freedom to choose a gauge is intimately related to the non-trivial re-
lationship between the canonical variables defined in Equation (2) and the
physical observables.

These general principles apply equally to the Lagrangian density formu-
lations of quantum mechanics and field theory. Naturally, classical variables
must be replaced by appropriate quantum mechanical operators, but the
form of the relationship in Equation (3) is identical. The point of this
example is to remind you that the essential distinction between canonical
variables and physical observables is present even in classical physics.

1.2 Electromagnetism in quantum mechanics

In the quantum mechanical context, canonical energy and momentum vari-
ables are replaced by differential operators in the usual way:

Ê = i
∂

∂t
and p̂ = −i∇. (5)

Or, in covariant notation:
p̂µ = i∂µ. (6)

The equations of motion inevitably involve these operators acting on wave-
functions or fields, here referred to generically with the symbol ψ. In ad-
dition, covariant notation will be used for simplicity, as the separation into
energy and momentum components (e.g. for application in the Schrödinger
equation) is straightforward.

When electromagnetic interactions are included, physical four-momentum
operators can be extracted by modifying the canonical operators in a way
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analagous to Equation (3):1

p̂µ = i∂µ −QAµ
= i(∂µ + iQAµ)

= iDµ (7)

In the last line, the covariant derivative Dµ = ∂µ+iQAµ is introduced, which
replaces ∂µ when calculating physical observables for interacting particles or
fields.

One immediate issue is that the covariant derivative varies under a gauge
transformation involving the field Aµ:

Aµ → A′µ = Aµ − ∂µχ
⇒ Dµ → D′µ = ∂µ + iQAµ − iQ∂µχ. (8)

Thus, it would appear that the four-momentum expectation value 〈ψ|p̂µ|ψ〉
changes, violating gauge invariance. This problem can be elegantly solved
by additionally transforming the wavefunction ψ, which has no classical
analogue, according to

ψ → ψ′ = eiQχψ. (9)

We note in passing that it alters an internal space of the wavefunction
(its phase), rather than anything directly related to the external space-
time.

Exercise 3: Find out how the combination Dµψ changes under the
combined transformation of Equations (8) and (9). Use this result to
show that 〈ψ|p̂µ|ψ〉 is unaffected by the gauge transformation.

Exercise 4: (Optional) Beginning with a free particle (Aµ = 0), con-
sider the gauge transformation given by χ = − arg(ψ)/Q. What are the
resulting potentials and new wavefunction? Give a physical interpreta-
tion of the results in the case that ψ is a plane-wave function.

1.3 Relation to the U(1) symmetry group

It is well known that all observable quantites of any theory are invariant
under a global phase transformation of a wave function or field

ψ → ψ′ = eiφψ, (10)

so long as the phase angle φ does not depend on space-time coordinates.
The prefactor eiφ is a member of the U(1) group, discussed in the last

1From this point on, p̂µ is understood to represent the physical four-momentum, while
i∂µ continues to describe the canonical four-momentum.
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tutorial. The transformation in Equation (10) is referred to as a global U(1)
transformation. When electromagnetic interactions are introduced, we find
that now a much more stringent symmetry exists, that of the local U(1)
transformation of Equation (9).

Thus, it appears that internal symmetries of a wavefunction or field are
somehow related to their gauge interactions. Indeed, if we began with a
non-interacting (free) particle, we could “derive” the electromagnetic inter-
action by requiring that the transformation in Equation (9) has no effect
on observable quantities. We would then be forced to introduce a new field
Aµ associated with the four-momentum operator, which would transform as
given in Equation (8).

All gauge interactions of the Standard Model are ultimately derived in
this way. Starting from the Lie group operators applied to an internal space
(called a Hilbert space), one demands that physically observable quantities
are unchanged upon arbitrary local rotations within this space. Additional
complications arise, however, when the group in question is a non-Abelian
group. It is this topic that we will consider next.

2 Non-Abelian groups in gauge theories

Recall from the previous tutorial that a non-Abelian group is one where at
least one structure constant fabc is non-zero, where the structure constants
are defined via

[Ta, Tb] = TaTb − TbTa = ifabcTc. (11)

For SU(2), the structure constants are equal to the completely antisymmet-
ric Levi-Civita symbol εabc. In the case of SU(3), the constants are more
complicated, and given in the lecture notes.

We will start by generalising the transformations derived in the previous
section, without assuming that the group elements commute. In general, a
state ψ will transform as follows:

ψ → ψ′ = Gψ = eiα·Tψ, (12)

where G is a local Hilbert space transformation. We introduce a covariant
derivative to absorb changes to the Lagrangian density resulting from this
transformation:

Dµ = ∂µ + igWµ = ∂µ + igT ·W µ. (13)

Here, W µ is a vector of new gauge fields, with a size corresponding to
the number of group generators, while g is an associated coupling strength,
analogous to the electric charge. Under the gauge transformation, the field
Wµ transforms as follows:

Wµ →W ′µ = GWµG
−1 +

i

g
(∂µG)G−1. (14)
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Exercise 5: Show that under this transformation D′µψ′ = GDµψ.

Exercise 6: Show that Equation (14) reduces to Equation (8) for the
U(1) transformation of Equation (9) if g = Q.

Alternatively, we can also write Equation (14) in terms of the component
fields

T ·W ′
µ = eiα·TT ·W µe

−iα·T +
i

g

(
∂µe

iα·T ) e−iα·T ,
or TaW

′
µ,a = eiαbTbTaWµ,ae

−iαcTc +
i

g

(
∂µe

iαbTb
)
e−iαcTc , (15)

where the Einstein summation convention for indices has been assumed.
The above expressions describe a generic, arbitrarily large, transforma-

tion of a gauge field derived through symmetry principles. For our puposes
it is useful to also consider the perturbative regime, when the transformation
G is close to the identity. In this case, |α| is small, and eiα·T ≈ 1 + iα · T .
If we neglect second-order terms in α and ∂µα, we can write Equation (15)
as

TaW
′
µ,a ' (1 + iαbTb)TaWµ,a(1− iαcTc)−

1

g
(∂µαa)Ta(1− iαbTb)

= TaWµ,a − i(αcTaTc − αbTbTa)Wµ,a −
1

g
(∂µαa)Ta +O(α2) (16)

Here, we note that the indices b and c on the right hand side are arbitrary,
so we can rewrite αcTaTc as αbTaTb to obtain

TaW
′
µ,a = TaWµ,a − iαb[Ta, Tb]Wµ,a −

1

g
(∂µαa)Ta

= TaWµ,a + fabcαbTcWµ,a −
1

g
(∂µαa)Ta (17)

This suggests the following solution:

W ′µ,a = Wµ,a + fabcαcWµ,b −
1

g
(∂µαa). (18)

Exercise 7: Show explicitly that D′µψ′ = GDµψ for the infinitecimal
transformation of Equation (18), to first order in |α|.

3 Building an interacting Lagrangian

Consider the Lagrangian density for a free fermionic field ψ:

L = ψ̄(iγµ∂µ −m)ψ. (19)
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As previously discussed, a gauge interaction for this fermion may be intro-
duced by replacing ∂µ by the covariant derivative from Equation (13):

L = ψ̄(iγµDµ −m)ψ

= ψ̄(iγµ∂µ −m)ψ − gψ̄γµT ·W µψ. (20)

The final term of Equation (20) represents interactions between the
fermion and the gauge field. These modify the propagation of the free
fermion field, described in the first two terms. However, we must also con-
sider the possibility of Lagrangian density terms that involve only the fields
W µ. It turns out that the only Lorentz-covariant object allowed by gauge
symmetry that we can form from the gauge fields alone is the commutator
of the covariant derivative, [Dµ,Dν ]. This can be evaluated as follows:

[Dµ,Dν ] = [∂µ + igT ·W µ, ∂ν + igT ·W ν ]

= [∂µ, ∂ν ] + ig[∂µ,T ·W ν ] + ig[T ·W µ, ∂ν ]

− g2[T ·W µ,T ·W ν ]. (21)

The first commutator is evidently zero. The commutator in the second
term can be found by considering what happens when this operates on a
wavefunction:

[∂µ,T ·W ν ]ψ = ∂µ(T ·W νψ)− T ·W ν(∂µψ)

= (∂µT ·W ν)ψ. (22)

Note that the end result does not depend in any way on the wavefunction
we temporarily introduced. Similarly, [T ·W µ, ∂ν ] = −∂νT ·W µ. The
final term of Equation (21) is evaluated using the group algebra, giving the
following result

[Dµ,Dν ] = ig T · (∂µW ν − ∂νW µ)− ig2fabcTaWµ,bWν,c

= Ta[ig(∂µWν,a − ∂νWµ,a)− ig2fabcWµ,bWν,c]. (23)

In the U(1) case, the structure constants vanish, and Equation (23) is pro-
portional to the field tensor Fµν = ∂µWν − ∂νWµ, familiar from electro-
magnetism. In the non-Abelian case, the first terms of Equation (23) also
describe free fields that propagate in the vacuum much like the photon, but
the final term will not vanish.

The only Lorentz scalar field propagation term that we can construct
using Fµν ∝ [Dµ,Dν ] is FµνF

µν . The final term of Equation (23) will yield
terms proportional to (∂µWν)WµW ν and WµWνW

µW ν , where the group
generator indices have been suppressed. These terms ultimately correspond
to interactions between the various components of the W µ field, something
that we will return to later in the course.
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4 Gauge theories and particle masses

While gauge theory looks on the surface to be an elegant way to describe
natural forces, it suffers from one important problem: it requires all (non-
singlet) particles to be massless, in order to work.

In the case of gauge bosons, to give a mass to the W µ field would require
a term in the Lagrangian density proportional to W µ ·W µ (recall the Proca
equation from tutorial 1). However, the terms available in Equation (23) do
not allow any quadratic terms the Lagrangian density, because these would
break the gauge symmetry. This is a problem when it comes to describing the
weak nuclear force, as the W and Z bosons that mediate it have substantial
masses of about 80 and 90 GeV, respectively.

What is perhaps less obvious is that, due to the peculiar nature of the
weak interaction, all weakly interacting fermions must also be massless. It
might naively be thought that a fermionic mass term −mψ̄ψ (c.f. Equa-
tion (19)) would always remain invariant under any transformation ψ → Gψ.
It turns out that this is not the case for the weak nuclear force, which acts
differently on the left- and right-handed components of ψ. Recalling the
first tutorial, we can rewrite ψ as a sum of these components:

ψ = ψL + ψR

=
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ. (24)

The left- and right-handed spinors transform differently under the SU(2)
symmetry transformation for the weak force. Specifically, ψL is an SU(2)
doublet, while ψR is a singlet, and so invariance of the fermionic mass terms
cannot be assumed.

Exercise 8: Evaluate the conjugate field ψL in terms of ψ̄ and γ5.a Use
this result, together with the equivalent expression for ψR, to evaluate
the fermion mass term mψ̄ψ in terms of the chiral eigenstates.

aThe long bar in ψL indicates that the chirality projection operator is applied
before conjugation.

It should be clear from the previous exercise that the fermion mass terms
are not allowed by the weak force SU(2) symmetry. We will return to the
puzzle of particle masses in the SM in the next tutorial.
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