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In the last tutorial, we finished by noting that gauge symmetries require
all gauge bosons to be massless, and also that fermion masses are forbidden
in the Standard Model. Observationally, we know that the W and Z bosons,
as well as the fermions, do have mass, which should apparently be forbidden
by the SU(2)L gauge symmetry of the weak nuclear force. We will now
explore how this issue is resolved within the Standard Model.

1 The Higgs field

The solution, proposed by Robert Brout, François Englert, Peter Higgs and
others, is not to abandon the symmetry principles behind the description of
forces, but rather to change the vacuum state itself. In everything considered
so far, it has been implicitly assumed that in the vacuum all expectation
values 〈ψ〉 = 〈0|ψ|0〉 are zero. This arises naturally if the potential for a
particle has a minumum at zero, as in Figure 1 (left).1 Adding more energy
to the field2 increases the maximum possible value for |ψ|.

The Higgs field φ, on the other hand, has a quartic potential, illustrated
in Figure 1 (right). At very high energies (the upper dotted line), this is
difficult to distinguish from the quadratic case, but at low energies (lower
dotted line), it is clear that the “bump” at φ ∼ 0 will affect the ground
state significantly. In this simple one-dimensional example, there will be
two degenerate vacuum states, each centered on one of the two minima
illustrated, with the same average magnitude 〈|φ|〉 = v.

The physical Higgs field is a complex SU(2)L doublet, with four real com-
ponents. Despite this, the vacuum expectation value (vev, parameterised by
a constant v), and real fluctuations around it, H(x), can be written with
full generality as

φ =
1√
2

(
0

v +H(x)

)
, (1)

1Recall from the first tutorial that a (quadratic) mass term in the Lagrangian density
can be regarded as a kind of potential energy.

2This means adding quanta to the particular mode described by ψ(E,p).
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Figure 1: Left: A quadratic potential function for a massive particle. Right:
The Higgs field potential, with quadratic and quartic terms. In both cases,
the x-axis corresponds loosely to the field magnitude.

where v > 0 is a real constant. This amounts to a specific choice of
(spacetime-dependent) SU(2)L × U(1)Y gauge. After making this choice,
the underlying symmetry is no longer apparent; it has been broken.

Exercise 1: Using results from tutorial 2, generic SU(2)L and U(1)Y
gauge transformations may be written as

GSU(2)
L

=

(
ω ζ
−ζ∗ ω∗

)
and GU(1)Y = ε (2)

with |ω|2 + |ζ|2 = 1 and |ε|2 = 1.

How many real free parameters does each transformation have?
Use these results to compute the full SU(2)L×U(1)Y transformation

(simply the product of the individual transformations) applied to an
arbitrary Higgs field:

φ =
1√
2

(
va
vb

)
.

Find the specific rotation required to express the Higgs field in the form
of Equation (1). How many free real parameters remain?

In this new vacuum, previously massless particles now appear to have
mass. It is easiest to see how this might work for fermions. Consider the
Lagrangian density interaction term yψLψRφ, where y is an (at this point)
arbitrary coupling constant between ψ and φ. This, unlike the fermion mass
term mψ̄ψ, is a gauge-invariant scalar quantity, and is thus allowed in the
Lagrangian density. With the specific choice of Equation (1), and supposing

for the moment that we are concerned with electron-like fields ψL =

(
ν
eL

)
2



and ψR = eR, we have

yψLψRφ =
y√
2

(
ν eL

)
eR

(
0

v +H(x)

)
=

y√
2
veLeR +

y√
2
H(x)eLeR. (3)

Now, the first term has the quadratic structure of a mass term, while the sec-
ond term describes an interaction between the electron field and excitations
of the Higgs field H(x). Adding on the Hermitian conjugate y∗φ†ψRψL gives
a term proportional to eReL. The two together therefore give the appearance
that the fermion field e = eL + eR has mass.

We will return to the question of gauge boson mass after a short diver-
sion.

2 The Standard Model Lagrangian density

We are now ready to write down the complete Lagrangian density for the
Standard Model. The gauge symmetry groups are:

• A U(1)Y symmetry, acting on hypercharge, with an associated vector
field Bµ.

• An SU(2)L symmetry acting on left-handed fermions and the Higgs
field, with three vector fields W µ.

• An SU(3)C symmetry acting on colour, with eight vector field Gµ.

The matter fields are the following (for one generation - the other two
generations are identically structured):

• A left-handed lepton SU(2)L doublet, `L =

(
νL
eL

)
.

• A right-handed electron SU(2)L singlet, eR.3

• A left-handed quark SU(2)L doublet, qL =

(
uL
dL

)
.

• Two right-handed quark SU(2)L singlets, uR and dR.

Finally, there is the Higgs field φ, a complex scalar SU(2)L doublet.
The hypercharges and gauge group representations of all these fields are
summarised in Table 1.

3Theoretically, we could hypothesise a right-handed neutrino field νR and give neutrinos
mass. However, there are other possbile mechanisms for this and there is as yet no solid
evidence for νR fields specifically, so this is not considered to be part of the Standard
Model. We will return to the topic of neutrino masses later in the course.
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Particle Yf SU(2)Lplet SU(3)C-plet

`L −1 2 1
eR −2 1 1
qL

1
3 2 3

uR
4
3 1 3

dR −2
3 1 3

φ 1 2 1
B 0 1 1
W 0 3 1
G 0 1 8

Table 1: Hypercharge values and gauge representations for the Standard
Model fields.

Using these fields, the SM Lagrangian density for one fermion generation
may be written as follows:

L =
∑
f

iψfγ
µDfµψf (4a)

− 1

4
BµνB

µν − 1

4
W µν ·W µν −1

4
Gµν·Gµν (4b)

+ (Dφµφ)†Dφµφ− µ2φ†φ− λ(φ†φ)2 (4c)

−
[
`LφyeeR + h.c. (4d)

+ qLφyddR + h.c. (4e)

+
(
−dL uL

)
φ∗yuuR + h.c.

]
(4f)

+ θ
αs
8π
εµνρσGµν ·Gρσ . (4g)

Let us examine these lines one by one.
The first line, (4a), contains kinetic and gauge interaction terms for all

of the fermion fields, indicated by the sum over f . The covariant derivative
is now also labeled by f , as its form changes depending on the properties of
the associated fermions. The most complicated covariant derivative is the
one for the left-handed quarks, which has the following form:

DqLµ = ∂µ + i
g′

2
YqLBµ + igT ·W µ + igsTs ·Gµ

= ∂µ + i
g′

2
YqLBµ + i

g

2
τ ·W µ + i

gs
2
λ ·Gµ. (5)

The first line uses the notation from the previous tutorials, and is very
convenient for whole matrix operations due to the consistent normalisation
of Tr(T 2

a ) = 1
2 . In contrast, the τ and λ matrices tend to be more convenient
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in calculations that involve the individual matrix elements. The factor of
1
2 in the U(1) hypercharge term is purely conventional, but related to the
above usage.

In (4b), we have the kinetic terms for the gauge bosons. The field tensors
are related to the commutator of the relevant covariant derivative, as shown
in the last tutorial. For example, Bµν = − i

g′ [Dµ,Dν ] = ∂µBν − ∂νBµ.
Lines (4c) to (4f) contain terms involving the Higgs field φ. The potential

terms on line (4c) allow its vev to be non-zero. The remaining lines allow
the fermion fields to acquire mass once this is done, parameterised by the
Yukawa coupling constants ye, yu and yd. For this single-generation exam-

ple, the Yukawa constants are simply numbers, given by yf = mf

√
2
v . The

mass terms are not themselves Hermitian, and so their Hermitian conjugates
(“h.c.”) must also be added to the Lagrangian density. For example, the
“h.c.” term in (4d), giving mass to the electron field, is −eRy∗eφ†`L.

Exercise 2: Why are the left-handed quark fields reversed in Equa-
tion (4f)? Hint: What terms would result if they were replaced with
qL? Why are these terms forbidden?

Finally, we have the term in (4g). This is the so-called “QCD θ” term,
and is in principle allowed by all of the symmetries of the SM. However,
the presence of the fully antisymmetric tensor εµνρσ means that this term
violates CP, an effect which is not observed in strong interactions. Exper-
imental evidence suggests that the parameter θ is less than about 10−9,
although there is no clear reason as to why it should be so small.

3 Electroweak symmetry breaking and the boson
sector

3.1 The Higgs boson

In the stable vacuum at low energy, the Higgs field has a non-zero vacuum
expectation value. In actual fact, an infinite number of equivalent vacua
exist, which in turn has important consequences for the Bµ and W µ fields.

The potential, taken from Equation (4c), may be rewritten (up to a
constant term that we may neglect) in terms of two new real parameters v
and mh:

V (φ) = µ2φ†φ+ λ(φ†φ)2

=
m2
h

2v2

(
φ†φ− v2

2

)2

+ const. (6)

In the second form, there is a ring of minima (as long as v is real), all

satisfying φ†φ = v2

2 , or |φ| = v/
√

2. The values of µ and λ in terms of mh
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and v are easily found

λ =
m2
h

2v2
,

µ2 =
m2
h

2v2
· 2 ·

(
−v

2

2

)
= −1

2
m2
h. (7)

Now we shall consider the effect of a small perturbation from some point
with |φ| = v/

√
2. For the moment, we shall neglect the fact that φ is an

SU(2)L doublet, and just assume it is a complex field. Without loss of
generality within this assumption, we can consider starting from the point
φ = v/

√
2. We may write the perturbation in terms of two real parameters,

χ and ψ:

φ =
1√
2

(v + χ(x) + iψ(x)) . (8)

Now we place this expression into the Higgs kinetic and self-interaction
part of the Standard Model Lagrangian density, for now neglecting gauge
interactions, so that Dφµ = ∂µ:

LHiggs = (∂µφ)†∂µφ− V (φ)

=
1

2
∂µ(χ− iψ)∂µ(χ+ iψ)−

m2
h

2v2
· 1

4

{
(v + χ− iψ)(v + χ+ iψ)− v2

}2
=

1

2
∂µχ∂

µχ+
1

2
∂µψ∂

µψ −
m2
h

8v2
{

2vχ+ χ2 + ψ2
}2

=
1

2
∂µχ∂

µχ+
1

2
∂µψ∂

µψ −
m2
h

8v2
[
4v2χ2 + 4vχ(χ2 + ψ2) + (χ2 + ψ2)2

]
=

1

2
∂µχ∂

µχ− 1

2
m2
hχ

2 +
1

2
∂µψ∂

µψ −O(χ3, χψ2). (9)

Here, we assume that χ and ψ are small, so that cubic and higher terms
can be neglected. Recalling tutorial 1, we recognise from the form of Equa-
tion (9) that the field χ has a mass mh, while ψ is massless. In the Standard
Model, χ represents an observable Higgs boson.

What about ψ? This is called a Goldstone boson, and its appearance
is a general feature of spontaneous symmetry breaking. It is, however, not
directly observable, thanks to gauge symmetry. In this simple example,
the ψ part of the transformation Equation (8) can be removed by a local

infinitesimal U(1) rotation G = e−iψ(x)/
√
2 (see also Exercise 1).

3.2 Electroweak boson mass

Now we consider the gauge boson fields after U(1)Y × SU(2)L symmetry
breaking occurs. All of the essential features are in the covariant derivative
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Dφµ. Written explicitly as a 2× 2 matrix in SU(2)L space, we find that

Dφµ = ∂µ + i
g′

2
YφBµ + i

g

2
τ ·W µ

=

(
∂µ + ig

′

2 Bµ + ig2W
0
µ ig2

(
W 1
µ − iW 2

µ

)
ig2
(
W 1
µ + iW 2

µ

)
∂µ + ig

′

2 Bµ − i
g
2W

0
µ

)
, (10)

recalling that Yφ = 1.
We begin by defining the charged W boson fields, which are the non-zero

elements of the SU(2)L raising and lowering operators:

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (11)

We then have Bµ and W 0
µ remaining along the leading diagonal of Dφµ, which

describe neutral-current electroweak interactions. These fields have the same

quantum numbers and may mix. With a choice of φ = 1√
2

(
0
v

)
, only the

combination in the lower right corner of the matrix in Equation (10) acquires
mass. With appropriate normalisation, we define this field to be Zµ

Zµ =
gW 0

µ − g′Bµ√
g2 + g′2

= cos θWW
0
µ − sin θWBµ, (12)

where tan θW = g′/g defines the Weinberg angle θW. The orthogonal field
is denoted Aµ:

Aµ =
g′W 0

µ + gBµ√
g2 + g′2

= sin θWW
0
µ + cos θWBµ. (13)

Exercise 3: Substitute the above definitions for W±µ , Zµ and Aµ into

Equation (10). Use this to compute Dφµ, and use the coefficient of Aµ
to argue that the electric charge can be expressed as

e = g′ cos θW = g sin θW (14)

Exercise 4: Use the result of the previous exercise to compute (Dφµφ)†Dφµφ
in the vacuum, i.e. with H(x) = 0. Use this to show that the photon is
massless and that

mW =
gv

2
, mZ =

mW

cos θW
. (15)

Hint: Recall the Lagrangian density for the Proca equation from the
first tutorial. What is W+†

µ equal to?
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Exercise 5: (Optional) Extend the previous exercise to the case of
H(x) 6= 0. What is the coupling strength between the Higgs boson and
a) two W bosons, b) two Z bosons, c) two photons?

3.3 Coupling of the Z and photon to fermions

Let’s take another look at the diagonal terms of the covariant derivative in
Equation (10). Generalising to other SU(2)L doublets, we can without loss
of generality write the interaction part as4

i
g′

2
YfBµ + igI3W

0
µ , (16)

where I3 is the third component of weak isospin for the field f (i.e. ±1
2 for

the two members of a weak doublet, or zero for a right-handed singlet).

Exercise 6: Express Equation (16) in terms of Aµ and Zµ. Show that
the coefficient of Aµ is equal to ieQf , where

Qf =
Yf
2

+ I3. (17)

The values of Yf in Table 1 are assigned based on this relationship.
Show in turn that the coefficient of Zµ is proportional to the “charge”

cf = I3 −Qf sin2 θW. (18)

(The factor g/ cos θW is conventionally absorbed into the Z boson cou-
pling constant).

4 Lepton masses: the CKM and PMNS matrices

We end this section of the course on gauge symmetry with a few notes about
one of the most important effects of extending the SM to three generations.
In this case, the notation of Section 2 needs to be extended, so that `L, eR,
qL, uR and dR acquire an extra generation index i ∈ {1, 2, 3}. For example,
q2L contains the left-handed charm and strange quarks.

The first place in the Lagrangian density that the fermion fields enter is in
line (4a), where the covariant derivatives act on them. When more than one
generation exists, we can choose to align the generations such that the simple
sum over fermions remains valid, producing terms like iq1Lγ

µDqLµ q1L but not
iq2Lγ

µDqLµ q1L, for example. These fields (q2L, u1R etc.) define the interaction
basis of the fermion fields, and each generation remains indepdendent.

However, by making this choice, we are then not able to prevent addi-
tional Higgs Yukawa terms such as q2Lφyu21d1R. This mixes the first and

4The quarks have strong interaction terms, but these are unaffected by what follows.
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second generations, but satisfies all SM gauge symmetries because all of the
SU(2)L doublets qiL transform in exactly the same way. After all flavour
combinations are taken into account, and considering just quarks for the
moment, this means that yu and yd now become 3× 3 (complex) matrices,
rather than just numbers.

These matrices can be diagonalised, as shown in the lecture notes, by
rotating the quark fields in flavour space with a unitary transformation
(u′iL = U †uijujL etc.). This defines the mass basis of the flavours, so-called
because it diagonalises the mass terms. It describes the states that would
propagate freely in the absence of interactions.

Now we consider the gauge interactions between mass eigenstates. All
of the terms in Equation (4a) involving right-handed fields are of the form
uiRXuiR etc., where X is some operator, and are in fact unaffected by this
transformation. Similarly, the electromagnetic and strong interaction terms
for left-handed quarks are of the form qiLXqiL, where X is proportional to
the SU(2)L identity matrix. These terms are also unaffected by the trans-
formation, so that these forces remain flavour-diagonal.

Exercise 7: Demonstrate that flavour-diagonal Lagrangian density
terms remain flavour-diagonal under a rotation of the flavour basis. For
example, you could consider the kinetic terms iq1γ

µ∂µq1 + iq2γ
µ∂µq2

under an arbitrary rotation between the (generically named) q1 and q2
fields.

It is a different matter when we come to weak interactions, in partic-
ular charged current interactions. The Lagrangian density term is again
of the form qiLXqiL, but X has off-diagonal terms equal to those shown
in Equation (10). When expanded, this results in terms like uiLγ

µW−µ diL,

which transform to u′iLU
∗
uijγ

µW−µ Udjkd
′
kL.5 The matrix U †uUd is called the

CKM matrix, after Cabbibo, Kobayashi and Maskawa, and it describes the
changes between quark generations that can occur in charged-current weak
interactions.

If we assume that a right-handed neutrino exists, then a similar matrix
can be obtained for the leptons. This is the so-called PMNS matrix (af-
ter Pontecorvo, Maki, Nakagawa and Sakata), and could be responsible for
neutrino oscillations. The form of the PMNS matrix is similar to the CKM
matrix, although the numerical values of the elements are very different.
However, the νR is essentially unobservable, as it is a singlet of all three
Standard Model gauge groups, and so its existence remains unconfirmed.
We will return to both of these topics later in the course.

5The first matrix is really U†u, but the transposition has already been applied by swap-
ping the indices: (U†u)ji = U∗uij .
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