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Symmetry Groups

In elementary particle physics, the most common groups are of the type U(n); the collection of all unitary
n×n matrices1. If we restrict ourselves further to unitary matrices with determinant 1, then the group is called
SU(n).

1. Show that the set of all unitary n×n matrices constitutes a group. To prove closure, for instance, it must
be shown that the product of two unitary matrices is itself unitary.

2. Show that the set of all unitary n× n matrices with determinant 1 constitutes a group.

If we limit ourselves to real unitary matrices, the group is O(n)2. Finally, the group of real, orthogonal, n× n
matrices with determinant 1 is SO(n), which may be thought of as the group of all rotations in a space of n
dimensions (SO(3) describes the rotational symmetry related to the Noether’s theorem to the conservation of
angular momentum).

3. Show that O(n) is a group.

4. Show that SO(n) is a group.

Rotation Groups In Action

In general, if the coordinate axes of a system are rotated the components of a vector within that system will
change. Let’s consider a vector A in two dimensions and suppose its components with respect to Cartesian axes
{x, y} are (αx, αy).

1. What are its transformed components (α′
x, α

′
y) in a system {x′, y′}, which is rotated counterclockwise by

an angle θ? The answer can be expressed in the form if a 2× 2 matrix R(θ):

(

α′
x

α′
y

)

= R

(

αx

αy

)

. (1)

2. Show that the R representation is an orthogonal matrix and then find its determinant.

3. The set of all such rotations described by matrix R constitutes a group; how is it called?

4. By multiplying the matrices, show that R(θ1)R(θ2) = R(θ1 + θ2); is this an Abelian group?

Consider the matrix

M =

(

1 0
0 −1

)

. (2)

1A unitary matrix is one whose inverse is equal to its transpose conjugate, U−1 = Ũ∗

2An orthogonal matrix is one whose inverse is equal to its transpose, O−1 = Õ
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5. Does it belong to the O(2) group? How about SO(2)? What is the effect on vector AAA? Does it describe
a possible rotation of the x− y plane?

Now, we might inquire how the components of a spinor

(

α
β

)

= α

(

1
0

)

+ β

(

0
1

)

(3)

transforms under rotations. The transformation follows the following rule

(

α′

β′

)

= U(θθθ)

(

α
β

)

(4)

where U(θθθ) is the 2× 2 matrix

U(θθθ) = e−
i

2
θθθ·σσσ . (5)

In this representation, the vector θθθ points along the axis of rotation and its magnitude θ is the angle of rotation
about that axis (right-hand rule) and θ̂ = θθθ/θ. The “Pauli spin matrices” σσσ arise in Wolfgang Pauli’s treatment
of spin in quantum mechanics and comprise a set of three 2×2 matrices which are Hermitian and unitary. They
are defined by

σ1 = σx =

(

0 1
1 0

)

σ2 = σy =

(

0 −i
i 0

)

σ3 = σz =

(

1 0
0 −1

)

(6)

so that S = ~

2
σσσ. Therefore, for a spin-1/2 particle, the spin operator is given by SSS the fundamental representation

of the SU(2) group. The Pauli matrices are occasionally denoted by τττ when used in connection with isospin

symmetries.
We realize that the exponent in (5) is itself a matrix, so an expression of this form can be interpreted as a

shorthand for the power series

eA ≡ 1 +A+
1

2!
A2 +

1

3!
A3 + · · · (7)

6. Show that eiπσz/2 = iσz.

7. Find the matrix U representing a rotation by 180◦ about the y axis and show that it is able to convert a
“spin up” state into a “spin down” one, as we would expect.

8. More generally, we can show that

U(θθθ) = cos
θ

2
− i(θ̂ · σσσ) sin

θ

2
(8)

Use the identity
(σσσ · aaa)(σσσ · bbb) = (aaa.bbb)I + iσσσ.(ααα× bbb) , (9)

which holds for any aaa and bbb “good” vectors. Prove it!

9. Show that U(θθθ) is a unitary matrix of determinant 1. In fact, the full set of such rotation matrices makes
up the SU(2) transformation group.

Therefore, spin-1/2 particles (leptons, quarks, baryon octet N , Λ, Σ±,0, Ξ−,0, Λ+
c ) transform under rotations

according to the two-dimensional representation of SU(2). Likewise, spin-1 particles (mediators, vector mesons
ρ, K∗, ω, ψ, D∗, Υ), described by vectors, belong three-dimensional representation of SU(2); spin-3/2 particles
(baryon decuplet ∆, Σ∗, Ξ∗, Ω−) described by a four-component object transform under the four-dimensional
representation of SU(2) and so on. Particles of different spin, belong to different representations of the rotation
group.

One may wonder how is SU(2) (the most important internal symmetry in elementary particle physics)
related to rotations; SU(2) is essentially very similar to the mathematical structure of SO(3), the group of
rotations in three dimensions. However, there’s a subtle difference between SU(2) and SO(3). According to the
previous problem, the matrix U for rotation through an angle 2π is −1, that is a spinor changes sign under such
rotation. On the other hand, geometrically, a rotation of a system through 2π is equivalent to “no rotation” at
all. SU(2) is thus a kind of “doubled” version of the SO(3) group in which spin-1/2 particles must be rotated by
an angle of 4π in order to return to their original configuration. In this sense, spinor representations of SU(2)
are not “true” representations of the rotation group and hence they do not appear in classical mechanics. In
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quantum mechanics, only the square of the wave function carries physical significance, and being such the minus
sign goes away.

Finally, the Pauli matrices, after a multiplication by i to make them anti-Hermitian, also generate trans-
formations in the sense of Lie algebras. The matrices iσj with j = 1, 2, 3 form a basis for SU2), which
exponentiates to the special unitary group SU(2):

SU(2) = span

{

iσ1
2
,
iσ2
2
,
iσ3
2

}

. (10)

As a result, each iσi can be seen as an infinitesimal generator of SU(2). The elements of SU(2) are then
exponentials of linear combinations of these three generators, and multiply as indicated above in (9) and as
follows:

σiσj = iεijk σk + δijI . (11)

Addendum

The set of all symmetry operations on a particular system has the following properties:

� Closure: If Ri and Rj are in the set, then the ordered product RiRj is also in the same set. That is, there
exists some Rk such that RiRj = Rk.

� Identity: There is an element I such that IRi = RiI = Ri for all elements Ri.

� Inverse: For every element Ri there is an inverse, R−1

i such that RiR
−1

i = R−1

i Ri = I.

� Associativity: Ri(RjRk) = (RiRj)Rk.

The above are the defining properties of a mathematical group. If all the elements of the group commute,
RiRj = RjRi, then the group is called Abelian.


