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Introduction:

● Feynman-diagrams:
○ Schematic representation of the mathematical expressions describing the behavior 

and interactions of elementary particles.

○ Will introduce methodology of calculating production cross section for any process 
based on a fixed set of rules, Feynman rules. 
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Introduction:
● Cross sections:

○ The term “cross section” derives from a thought experiment involving the 
scattering process of hard spheres:

■ Imagine a hard sphere of radius a, located somewhere within a total area of A
■ A second sphere is thrown towards the first sphere 

● The target sphere shows an area of πa2 
■ The probability that the incoming sphere would scatter from the target sphere is given by:

■ Imagine we have a parallel beam with the density ρ and the velocity v towards the target.
● In time t, this beam will fill a volume ρvtA, where A is now the area normal to the beam 

which fully contains it. 
○ Choosing t such that only one particle is contained in this volume, we can write:  

Cross sectional area of the sphere 
in terms of the beam area

or:
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Introduction:
○ Thus the cross section definition can be rewritten as:

 
where PS /t is the transition rate, i.e. the probability of scattering per unit time and ρv is 
the flux of particles.     

A cross sections can be understood as a transition 
rate per unit of particle flux  

Have to migrate these expressions to quantum mechanical scattering processes 
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Introduction:
● Cross sections:

○ Calculation of inclusive cross section:

 
■ Contributions from various production modes.

 

■ Tree level diagrams and ideally higher order diagrams:   
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Differential cross sections:



Differential cross sections as a gate to new physics 
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BSM physics contributions to the Higgs 
boson production process can modulate 
certain kinematical observables

Perform hypothesis tests to determine whether data 
fits better to SM predictions or BSM hypotheses
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Introduction:
● Decay rates and branching fraction:

○ The decay rate is defined as the probability per unit time that a decay X → x1x2 will 
occur
■ Decay rate and mean lifetime of a particle are related via:

■ For particles with multiple decay modes, the total decay rate is the sum of the 
individual decay rates:

 
○ The branching ratio of a decay X → x1x2 is defined via:



                          Higgs boson decays
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                             Higgs boson decays

● Thus decays to massless particles such as photon or gluons is only 
possible via top quark (or W boson) loops

● The masses of the particles running in these loops are large and thus such 
decay modes can compete with decays to fermions or W and Z bosons 

● Strength of the coupling between the Higgs boson and other particles 
is proportional to the particle mass:

and



W/Z boson  decays

● Lepton universality: 
○ All three types of charged leptons interact in the same way with other particles. 
○ The three lepton types are created equally often in particle transformations, or  decays 

(once differences in their mass are accounted for)

15



Quark decays

● CKM matrix elements describe transition from one quark flavour to another:
○ I.e. Vij measures the coupling of quark i to quark j:

○ The CKM matrix is given via:

○ The magnitudes of the matrix elements are:   

● Top quark decays almost 
exclusively via t → bW

Latest measurements of CKM matrix elements taken from: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf 16

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf


Lepton decays

● Electrons are stable
● Lifetimes:

○ Muons: 2.2 · 10-6 s
○ Taus:  290.6 · 10-15 s

● Neutrino oscillate:
○ Will be discussed next 

semester 
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 The Golden rule for scattering and decays

● There are two ingredients to the calculation of cross sections and decay rates:
1. The Amplitude for the process: 

2. The available phase space

●  The amplitude contains all the dynamical information of the process
○ It will be calculated by evaluating all relevant Feynman diagrams using a fixed set of rules 

(i.e. the “Feynman rules”)
● The phase space is purely kinematical 

○ It depends on masses, energies and momenta of particles participating in a reaction
○ Reflects the fact that a given process is more likely to occur the more phase space is 

available:  
■ A decay of a heavy particle into light secondaries involves a large phase space factor, as 

there are many different way to apportion the available energies.
■ The neutron decay via                               is highly suppressed as there is almost no mass 

to spare and thus the phase space factor is vers small 
18



            1.3.2 Golden Rule for scattering
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Golden Rule for scattering
● The production cross section σ for the scattering of two particles with given 

4-momenta p1 and p2 which produces several particles in the final state

is given via:

The integral is over the outgoing particle momenta

(6)
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Golden Rule for scattering
● The production cross section σ for the scattering of two particles with given 

4-momenta p1 and p2 which produces several particles in the final state

is given via:

The integral is over the outgoing particle momenta

First delta function ensures energy and momentum 
conservation between the initial and final state.

(6)
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Golden Rule for scattering
● The production cross section σ for the scattering of two particles with given 

4-momenta p1 and p2 which produces several particles in the final state

is given via:

The integral is over the outgoing particle momenta

Second delta function ensures that the outgoing particles 
are real, i.e., on their mass-shell.

(6)
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Golden Rule for scattering
● The production cross section σ for the scattering of two particles with given 

4-momenta p1 and p2 which produces several particles in the final state

is given via:

The integral is over the outgoing particle momenta

The theta function leads to positive outgoing particles 
energies.

(6)
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Golden Rule for scattering
● The production cross section σ for the scattering of two particles with given 

4-momenta p1 and p2 which produces several particles in the final state

is given via:

The integral is over the outgoing particle momenta

The dynamics of the scattering process are described via the 
scattering amplitude 

(6)
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Golden Rule for scattering
● The production cross section σ for the scattering of two particles with given 

4-momenta p1 and p2 which produces several particles in the final state

is given via:

The integral is over the outgoing particle momenta

S is a statistical factor which accounts for identical particles in 
the final state. For each group gi of identical final state particles, 
S contains a factor of      . Thus, if a + b → c + c + d + d + d , then  
S = (1/2!)(1/3!) = 1/12

(6)
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Golden Rule for scattering
● Equation (6) can be brought into a more suitable form by re-writing the 

second delta functions:

● One can exploit the following property of delta functions:
 

with                 and                   one can rewrite equation (7) as:

Where (*) does not contribute to the integral in (6) (θ function ensures E > 0) 

(7)
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Golden Rule for scattering
● Thus one obtains:

● Perform integration over              such that

follows.   with: 

(8)
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Golden Rule for scattering
● Example (2 → 2 scattering):

○ First calculate                                , which is a Lorentz-invariant scalar that can be 

evaluated in any coordinate system. The centre-of-mass system, is for this task 

particularly convenient:

■ Such that:  
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Golden Rule for scattering
● Example (2 → 2 scattering):

○ With these expressions equation (8) can be rewritten as:

○ The four-dimensional delta function separates into an energy part and a momentum part:

due to                         equation (9) can be written as:

(9)
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Golden Rule for scattering
● Example (2 → 2 scattering):

○ Introduce spherical coordinates to solve the integral:

○ such that:

○ With                       , the differential cross section is obtained as:

 

and: 

(10)
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Golden Rule for scattering
● Example (2 → 2 scattering):

○ Change from r to the variable u:

○ With this the integral from equation (10) can be rewritten as:

Upon integration, the delta-function sends u to the centre-of-mass energy of the 
collision:

○ From (11) it follows then after some algebra that:

 

(11)

Final state momentum
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Golden Rule for scattering
● Example (2 → 2 scattering):

○ In summary, the cross section for a 2 → 2 scattering  process is given by

○ For elastic scattering, the expression simplifies to:

 

○ If there are no identical particles in the final state, the permutation factor is S = 1
○ Energy-momentum conservation implies that the only free parameters are the two angles 

θ* and ϕ which specify the flight direction of particles 3.
■ Thus the cross section depends on these angles: 

as:



               1.3.3 Golden Rule for decays
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Golden Rule for decays
● The decay rate of a particle x1 (at rest) with a four-momentum p1 that decays 

via:

is given by the formula:

● Using the same approaches as for scattering, one obtains: 
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Golden Rule for decays
● Example (Two-particle decay):

○ If there are only two particles in the final state:

○ Separate again the four-dimensional delta function into an energy part and a momentum 
part:

○ With:

equation (12) can be written as: 

and and

(12)
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Golden Rule for decays
● Example (Two-particle decay):

○ The       integral is now trivial: in view of the final delta function it simply makes the 
replacement:

which leads to:

○ Switch again to spherical coordinates (and perform integral over angles):

 

○ Change from r to the variable u:

with:
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Golden Rule for decays
● Example (Two-particle decay):

and also:

○ Thus:

○ The delta function in the integral sends u to m1 and hence r to:

○ The final expression of the decay rate is then given by:



                           1.3.4 Amplitudes
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Amplitudes 
● Calculation of amplitude        using a fixed set of rules (“Feynman rules”) 
● Start with introducing the methodology by studying the Feynman rules for 

a “toy theory”:
○ Imagine there are only three kind of particles (A, B and C) with masses mA, mB and 

mC a  spin of 0 and each is its own antiparticle. 
■ There is only one vertex by which they interact:

We will assume that A is the heaviest of all three particles (it weighs more than 
the other two combined). 
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Amplitudes 
● Feynman rules for a “toy theory”:

■ Scattering processes:
● A + A → B + B

● A + B → A + B 

Lowest order diagrams
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Amplitudes 
● To calculate           use the following recipe:

1. Notation: Label the incoming and outgoing four-momenta p1, p2 ,.., pn. Label the internal 
momenta q1, q2 ,... . Put an arrow beside each line, to keep track of the “positive” direction 
(forward in time for external lines and arbitrary for internal lines). 

2. Vertex factor: For each vertex write down a factor  
3. Propagators: For each internal line write a factor:

 
where qj is the four-momentum of the line and mj is the mass of the particle described by the
 internal line. (Note that virtual particles do not lie on their mass shell)  

4. Conservation of energy and momenta: For each vertex, write a delta function of the form:

where the K’s are the four-momenta of the three particles coming into (or out of) the vertex. 
5. Integration over internal momenta: For each internal line write down a factor:

6. Cancel all delta functions: 
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Amplitudes 
● Feynman rules for a “toy theory” 

○ Example (Lifetime of particle A):
■ Lowest order diagram has no internal line
■ There is one vertex

●  Obtain: 

● Cancel the delta function (Rule 6)
■ Thus the amplitude at the lowest order is:

■ The decay rate and lifetime are therefore:

(Rule 2) (Rule 4)

      and
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Amplitudes 
● Feynman rules for a “toy theory” 

○ Example (A + A → B + B scattering):
■ Rule 1 - 5 yield: 

■ Doing the integral, the second delta function sends 
q → p4 - p2 , and we obtain

■ After applying Rule 6 we obtain: 
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Amplitudes 
● Feynman rules for a “toy theory” 

○ Example (A + A → B + B scattering):
■ A second Feynman diagram contributes to process

● Since the diagrams differ only by the interchange of p3 
with p4, there is no need to compute the amplitude 
from scratch. 

■ The total amplitude is:

 
■ Finally, the differential cross section is: 

     



                        1.3.5 Feynman Rules
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Feynman Rules (Tree Level)
● External lines: 

○ Spin 0:  (nothing)
○ Spin ½: 

■ Incoming particle: 
■ Incoming antiparticle: 
■ Outgoing particle:  
■ Outgoing antiparticle: 

○ Spin 1:
■ Incoming:
■ Outgoing: 

● Propagators:
○ Spin 0:

○ Spin ½:

○ Spin 1: 

massless massive

with:
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Feynman Rules (Tree Level)
● Vertex factors:

○ QED:

Coupling between photon and charged fermions:
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Feynman Rules (Tree Level)
● Vertex factors:

○ QCD: 

Coupling between quarks and gluons and gluon self coupling

with:
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Feynman Rules (QCD)
● Structure constants fαβγ are defined via the commutators of the Gell-Mann 

matrices:

The first three matrices resemble the Pauli-matrices, while the next four are 
obtained from swapping rows and columns from λ1, λ2 and λ3 
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Feynman Rules (QCD)
● The commutators of the Gell-Mann matrices follow:

● The structure constants are completely asymmetric:

● There are 8 × 8 × 8 = 512 structure constants, but most of them are zero and 
the rest can be worked out via the antisymmetry relation from the following 
set: 
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Feynman Rules (QCD)
● Colour charge:  

○ Quarks come in three colours, “red” (r), “blue” (b), and “green” (g).
○ A quark state is described by a spinor u(s)(p), giving its momentum and spin, and a 

three-element vector c giving its colour:

○ Gluons are responsible for the transfer of colour: 
■ Example (red quark turns into a blue quark (after emitting a quark)

○ Gluons carry a unit of colour and a unit of anticolour
■ In terms of colour SU(3) symmetry (on which the QCD is based) these states exist within a 

colour octet: 
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Feynman Rules (QCD)
● Colour charge:  

○ Colour singlets such as 

do not exist
● Singlets would appear as free particles in nature  

● For external quark lines:
○ Incoming particle: 

○ Incoming antiparticle:  

○ Outgoing particle:  

○ Outgoing antiparticle: 

with:
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Feynman Rules (Tree Level)
● Vertex factors:

○ GSW: 

Coupling between a W boson 
and leptons (quarks)

CKM matrix element

with i = u, c or t and j =  d, s or b
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Feynman Rules (Tree Level)
● Vertex factors:

○ GSW: Coupling between a Z boson and fermions 
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Feynman Rules (Tree Level)
● Vertex factors:

○ GSW: 

With:                             and 
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Feynman Rules (Tree Level)
● Vertex factors:

○ GSW: 
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Feynman Rules (Application)
● Example: Calculate cross section for the process:

where pi and si denote the four momenta and spin 
configurations of the particles.

● Following the Feynman rules of the QED we obtain:

The arrows next to the fermion and photon 
lines denote the directions of the particle 
momenta.

● The delta function * sends q to p1 - p3 and ** becomes:

 
which we have to drop according to the last Feynman rule
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Feynman Rules (Application)
● We therefore obtain:

which is a number and can be calculated once the 
momenta pi and spin si configurations are specified

● Spin averaging: 
○ In HEP experiments, particle beams are usually unpolarised and detectors do not 

distinguish between spin states.
■ Thus measured cross sections correspond to a combination of different spin configurations.

○ An unpolarised beam means that the probability of having the incoming electron 
(muon) spin in the up/down state is 50%.

○ To obtain the unpolarised cross section one therefore has to average over the four
initial state spin configurations.
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Feynman Rules (Application)
● Spin averaging:

○ The fact that the detector does not distinguish between the different spin states (up, 
down) of the outgoing particles, means that the combinations of all possible spin final 
states is the final measurement 

■ I.e., the sum of the processes that lead to (up, up), (down, up), (up, down), and (down, down).
○ The matrix element/amplitude is the only part of the cross section that depends 

on the particle spin.
■ Average over the initial spin configurations and sum over the final state spin 

configurations: 

(13)
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Feynman Rules (Application)
● Spin averaging:

○ We now calculate        and use a simplified notation with                      :              

○ Casimir’s trick:
■ We encounter here twice the generic form:

where Γ stands for a γ matrix.

Complex conjugate is the 
same as hermitian conjugate 
as the quantity in the square 
brackets is a 1 × 1 matrix

(14)
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Feynman Rules (Application)
● Spin averaging:

○ Casimir’s trick:
■ We examine the second bracket:
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Feynman Rules (Application)
● Spin averaging:

○ Casimir’s trick:
■ With this definition, the generic form reads:

■ Summing over the spin orientations of particle b:

where * follows the so called completeness relation:  
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Feynman Rules (Application)
● Spin averaging:

○ Casimir’s trick:
■ Thus we obtain:

where Q is a 4 × 4 matrix
■ We now sum over the spin configurations of particle a: 

■ We write it in components so we can reorder the terms:

  

with:
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Feynman Rules (Application)
● Spin averaging:

○ Casimir’s trick:
■ Exploiting again the completeness relation, leads to:

■ Inserting the definitions of G and Q, we have just proven the following relation (which is 
referred to as Casimir’s trick):

■ Once the summation over all spins is done, all that remains is to multiply matrices and 
calculate the trace.

  

4 × 4 matrix
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Feynman Rules (Application)
● Calculation of the spin-averaged cross section:

○ To apply Casimir’s trick to our case, we use:

○ Including equation (14) into equation (13) gives: 

○ Denote the electron mass with m and the muon mass with M:

  

and

(15)
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Feynman Rules (Application)
● Calculation of the spin-averaged cross section:

○ To calculate the traces from equation (15) we use the trace theorems:
■ Full details given e.g. in: D. Griffiths, Introduction to Elementary Particles, WILEY-VCH, 

2008, 2nd edition, page 252-253. 
■ For our purposes:

● Rule 1:

 
● Rule 2:

● Rule 3:

● Rule 10: The trace of the product of an odd number of gamma matrices is zero
● Rule 12:

● Rule 13:
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Feynman Rules (Application)
● Calculation of the spin-averaged cross section:

○ First we will calculate the electron trace:

■ For * we resolve the slash notation and apply Rule 13:

  

Due to rule 10 and 

Due to rule 12
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Feynman Rules (Application)
● Calculation of the spin-averaged cross section:

○ The muon trace results from the electron trace by replacing m with M, lowering the 
Greek indices, and replacing p1 → p2 and p3 → p4 , so that equation (15) becomes:
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Feynman Rules (Application)
● Calculation of the spin-averaged cross section:

○ The final form of the spin-averaged squared amplitude is:

○ The cross section for unpolarised e- μ- → e- μ- scattering is therefore given by:

  



                 1.3.6 Mandelstam variables
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Mandelstam variables 
● For 2 → 2 scattering the following Mandelstam 

variables are defined:

which are related by:

● When neglecting the electron and muon masses, the amplitude for e-μ 
scattering can be written using the Mandelstam variables as:
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Mandelstam variables 
● For 2 → 2 scattering the following Mandelstam variables are defined:

s-channel diagram t-channel diagram u-channel diagram

s, t, u equal the squared four-momenta of exchange particles  



                   1.3.7 Crossing symmetry 
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Crossing symmetry
● Suppose that a reaction of the form

is know to occur. Any of these particles can be “crossed” over to the other 
side of the reaction, provided it is turned into its antiparticle and the resulting 
interaction will also be (dynamically) allowed 
○ For example:

 
● This means that e.g. Compton scattering and pair annihilation are “basically” 

the same: 

○ The amplitudes of the original diagram and the crossed diagram can easily be inferred 
from each other

and



75

Crossing symmetry
● Example:

e- μ- → e- μ- e+ e- → μ+ μ-

s-channel diagramt-channel diagram

in massless limit: in massless limit:



            1.3.8 Higher order corrections
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Loop diagrams
● Back to the Feynman rules for our “toy theory”:

○ Previously we only considered leading order diagrams to the  A + A → B + B scattering:

○ Several next-to-leading order (NLO) diagrams exists:

Five “self-energy” 
diagrams

Two “vertex correction” 
diagrams

One “box” diagram 
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Loop diagrams
● Back to the Feynman rules for our “toy theory”:

○ Calculate amplitude for exemplary NLO diagram: 
■ Applying Feynman rules 1-5 yields:

■ Integration over  q1, using the first delta function, replaces q1 
by (p1 - p3), while integration over q4, using the last delta 
function, replaces q4 by (p4 - p2):  
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Loop diagrams
● Back to the Feynman rules for our “toy theory”:

○ Calculate amplitude for exemplary NLO diagram: 
■ Here, the first delta function will send  q2 → p1 - p3 - q3, and the 

second delta function becomes

which, by rule 6 has to be erased.     
■ Therefore the amplitude becomes:

■ Trying to solve the integral (switching to spherical coordinates) will fail: 
with:
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Loop diagrams
● Renormalization: 

○ The problem is solved by introducing a cutoff mass M:

○ The cutoff mass is assumed to be very large and will be taken to infinity at the end of the 
calculation (M → ∞)

○ The introduction of the cutoff has two consequences:
■ The physical masses and couplings (i.e. what we measure) are not identical with the 

expressions that appear in the original Feynman rules:

Infinites will be taken into account as the physical values of m and g will be used in the 
Feynman rules (instead of their “bare” values) 

■ The effective mass and coupling become depend on the energies of the involved particles (we 
speak of “running mass” and “running coupling”):

● For more details see e.g.: D. Griffiths, Introduction to Elementary Particles, WILEY-VCH, 
2008, 2nd edition, page 264-265 

δm and δg are infinite (in the limit M → ∞)  
which is not catastrophic (as we will not 
measure them). 
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Higher order corrections to QED processes
● Loop diagram contributions:

○ The QED scattering matrix is expanded in terms of α/π and 
each Feynman diagram is a term in this expansion

■ The expansion series converges early because the coupling 
factor  (α ≈ 1/137) is small   

■ Usually only a few diagrams are necessary to obtain a 
prediction with uncertainties comparable to the 
measurement precision of HEP

○ Higher order Feynman diagrams have more internal lines and 
vertices 

■ The photon can split into a fermion-antifermion pair which 
subsequently recombines (vacuum polarisation)

○ Loop diagrams and tree level diagrams lead to the same final 
particle state 

■ Thus the amplitudes have to be added and then squared to 
obtain the total cross section.

○ The amplitude of the loop diagram is proportional to α2 
■ Thus the total cross section receives only a small correction from 

the loop diagram.



82

Higher order corrections to QED processes
● Renormalisation (QED):

○ The “renormalized” coupling constant of the QED is defined via:

○ The energy dependence (expressed via the correction function f(Q2/m2)), is also 
absorbed into the couplings constant. 
■ This leads to:

where Q2 is the photon virtuality -q2 (and q is the 4-momentum of the virtual photon)
■ Which translates to:

(16)
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Higher order corrections to QED processes
● Renormalisation (QED):

○ Summing over all order (and considering all possible particles in the loop) leads to: 

where μ is a (mass) scale. 

→ running coupling constant of the QED: and

● Measurement:
○ The running of α can be determined for example, by measuring the cross section for e e → μ μ 

which is proportional to α2. The photon virtuality Q2 is given by s (i.e. the square of the 
centre-of-mass energy). By changing s through adjustments of the positron and electron beam 
energies, α can be determined as a function of Q2.
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Higher order corrections to QED processes
● Physics interpretation of the Q2 dependence of αQED :

○ Vacuum polarisation leads to a shielding of the electric charge
■  Fermion-antifermion pairs are produced in loop-diagrams by the exchanged photon.

■ At high Q2 , the photon resolves the bare electron charge, while at low Q2, the photon “sees” the 
charge in a larger area and part of the electron charge is shielded by the dipoles:

In one loop diagrams, the 
fermion pair forms an electric 
dipole

At higher orders, corresponding 
to several loops, several dipoles 
are formed:

→ The electron charge seen by the 
photon at low Q2 is smaller than the 
bare charge.
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Loop diagrams

● QCD corrections:
○ Significantly larger than QED corrections due 

to size of QCD coupling constant: αS(mZ) ≈  0.12
■ Higher order Feynman diagrams still lead to 

crucial contributions  
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Running coupling (QCD)

● In QCD, study the scattering between quarks via exchange of gluons
○ Analogous to photon, virtual gluon creates quark- and gluon-loops

● Analogous to equation (13), the quark- and gluon-loop contribution lead to: 

● Summing both expressions (considering all orders) finally gives:

which is applicable for Q2 >> Λ2 (Λ is the non-perturbative scale of QCD) 
○ Λ ~ 102 MeV (measured in e+e- collisions)

● The strong coupling constant αS decreases with increasing Q2

with:

and
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Colour Confinement

● For small distances (í.e. large energies) r << RProton

○ The potential between two quarks is ~ 1/r (analogous to the 
Coulomb-Potential) as gluons are massless 

■ Different behaviour (wrt. QED) for large(r) distances between 
charges

●  Potential has also term that increases linearly
○ All field lines go from one quark to the other

● Potential: 

“string tension” 

with σ ≈ 0.9 GeV/fm

● Confinement:
○ V → ∞  for r→ ∞   

● Asymptotic freedom:
○ V → 0 for r→ 0 (q2→ ∞)
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Colour Confinement
● If the distance between two colour charges exceeds values above the order of 

1 fm, it becomes energetically favorable for a new quark–antiquark pair to be 
created from the vacuum , rather than extending the tube further.
○ Described via Hadronization process:

■  Use phenomenological models to describe quark-fragmentation
● Field-Feynman model
● Lund-model 



                                          Jets

● Jets:  Collimated bunches of stable hadrons, 
originating from partons (quarks and  gluons) 
after fragmentation and hadronization

● Require collinear- and infrared-safety i.e. 
jets are unchanged by:

○ Collinear splitting 
○ Soft emissions

● LHC experiments preferrably use so called 
sequential clustering algorithms

● Application: Calculate for all pairs of 
particles i an j:



                                          Jets

● Jets:  Collimated bunches of stable hadrons, 
originating from partons (quarks and  gluons) 
after fragmentation and hadronization

● Require collinear- and infrared-safety i.e. 
jets are unchanged by:

○ Collinear splitting 
○ Soft emissions

● LHC experiments preferrably use so called 
sequential clustering algorithms

● Application: Calculate for all pairs of 
particles i an j:
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Measurements of the strong coupling constant
● Strong coupling constant can be determined via  production 

cross section measurement of hadrons in e+e- collisions: 

From: https://pdg.lbl.gov/2010/reviews/rpp2010-rev-qcd.pdf

https://pdg.lbl.gov/2010/reviews/rpp2010-rev-qcd.pdf
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QCD scales
● Exemplary choices of QCD scales:

○ Fixed scale:
~ mass of particle under study

○ Dynamic scale (for multi particle final states): 


