

MAX-PLANCK-INSTITUT FÜR PHYSIK

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 1

Tutor: Dr. Michael Holzbock

1. Four-Vector Computations

Compute the partial derivatives w.r.t. x of

$$
\partial_{\mu} \mathbf{e}^{-i p x}, \quad(a \partial)(b \partial) \mathbf{e}^{-i p x}, \quad \partial^{2} \mathbf{e}^{-i p x}, \quad \partial^{2} \mathbf{e}^{-x^{2} / 2}
$$

for constant four vectors a, b and p, and show that

$$
\partial_{\mu} x^{\mu}=4 .
$$

2. Euler-Lagrange Formalism

The Euler-Lagrange equations can be derived analogous to classical mechanics from the action S, the time integral of the Lagrangian L via the principle of the least action stating the system chooses the path for which S is an extremum (usually a minimum).
(a) How are the action S and the Lagrangian density \mathcal{L} for a field $\phi(x)$ defined?
(b) Derive the Euler-Lagrange equations

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi}=0
$$

by considering small variations to the fields $\phi(x) \rightarrow \phi^{\prime}(x)=\phi(x)+\delta \phi(x)$ that vanish on the boundary of the volume.
(c) For discrete systems, the Hamiltonian (total energy of the system) is defined as the spatial integral of the Hamiltonian density

$$
H=\int d x \mathcal{H}=\sum p \dot{q}-L
$$

for each dynamical variable q with conjugate momentum $p=\partial \mathcal{L} / \partial \dot{q}, \dot{q}=\partial \mathcal{L} / \partial t$. Show that this can be generalized for a continuous system to

$$
H=\int d^{3} x[\pi(\vec{x}) \dot{\phi}-\mathcal{L}]
$$

where $\pi(\vec{x})$ is the momentum density conjugate $\pi(\vec{x})=\partial \mathcal{L} / \partial \dot{\phi}(\vec{x})$.

3. Klein-Gordon Equation

The kinematics of a single, scalar and real-valued field $\phi(x)$ are governed by the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

where m is a constant.
(a) Derive the equations of motion using the usual procedure.
(b) What kind of system can this equation describe?

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 1
Tutor: Dr. Michael Holzbock
(c) What is the solution for a free scalar particle? How can the parameter m be interpreted?
(d) What is the constructed Hamiltonian?

4. Dirac Equation

The Dirac equation can also be derived by applying the Euler-Lagrange equations. Consider the Lagrangian density

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi, \quad \bar{\psi}=\psi^{\dagger} \gamma^{0} .
$$

(a) Apply Euler-Lagrange equations to $\bar{\psi}$ to derive the Dirac equation.
(b) What does it describe and what kind of objects are the ψ ?
(c) Show that the Dirac equation implies the Klein-Gordon equation

$$
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \psi(x)=0 .
$$

5. Proca Equation

Consider the Lagrangian for a massive spin-1 particle

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi_{\nu} \partial^{\mu} \phi^{\nu}+\frac{1}{2} \partial_{\mu} \phi^{\mu} \partial_{\nu} \phi^{\nu}+\frac{1}{2} m^{2} \phi_{\mu} \phi^{\mu} .
$$

Derive the equations of motion for ϕ^{μ}. Show that the field ϕ^{μ} fulfills the constraint $\partial_{\mu} \phi^{\mu}=0$.

