

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 2 Tutor: Dr. Michael Holzbock

1. Second Quantization The path to quantum field theory involves roughly two steps: the change from a discrete mechanical system to fields with infinite degrees of freedom and a quantization of these fields. For the latter consider a highly simplified (spin-0, one-dimensional) Lagrangian of the field $\hat{\phi}(x,t)$

$$\hat{\mathcal{L}} = \frac{1}{2} \left(\frac{\partial \hat{\phi}}{\partial t} \right)^2 - \frac{1}{2} \left(\frac{\partial \hat{\phi}}{\partial x} \right)^2.$$

Following the ideas of quantum mechanics, $\hat{\phi}(x,t)$ can be expressed as a Fourier expansion of the creation and annihilation operators \hat{a}^{\dagger} and \hat{a} :

$$\hat{\phi}(x,t) = \int \frac{dk}{2\pi\sqrt{2\omega}} [\hat{a}(k)e^{ikx-i\omega t} + \hat{a}^{\dagger}a(k)e^{-ikx+i\omega t}] \,.$$

- (a) Calculate the 'momentum field' $\hat{\pi}(x,t)$.
- (b) Verify that imposing the following commutation relations for \hat{a} and \hat{a}^{\dagger}

$$\begin{split} & [\hat{a}(k), \hat{a}^{\dagger}(k')] = 2\pi\delta(k - k') \\ & [\hat{a}(k), \hat{a}(k')] = [\hat{a}^{\dagger}(k), \hat{a}^{\dagger}(k')] = 0 \end{split}$$

are consistent with the equal time commutation relation between $\hat{\pi}$ and $\hat{\phi}$

$$\left[\hat{\phi}(x,t), \hat{\pi}(y,t) \right] = i \delta(x-y) \, .$$

(c) Consider the unequal time commutator $D(x_1, x_2) = [\hat{\phi}(\vec{x}_1, t_1), \hat{\phi}(\vec{x}_2, t_2)]$, where $\hat{\phi}$ is a massive KG field in three dimensions. Show that

$$D(x_1, x_2) = \int \frac{dk^3}{(2\pi)^3 2E} \left[e^{-ik \cdot (x_1 - x_2)} - e^{ik \cdot (x_1 - x_2)} \right]$$

where $k \cdot (x_1 - x_2) = E(t_1 - t_2) - \vec{k} \cdot (\vec{x}_1 - \vec{x}_2)$ and $E = (\vec{k}^2 + m^2)^{1/2}$. Show that $D(x_1, x_2)$ vanishes for $t_1 = t_2$ and use its Lorentz invariance to show that it vanishes for all space-like separations $(x_1 - x_2)^2 < 0$.

- (d) Derive the expression for the Hamiltonian \hat{H} .
- (e) Insert the expansions of $\hat{\phi}$ and $\hat{\pi}$ into your result of (d) and verify that

$$\hat{H} = \int \frac{dk}{2\pi} \bigg\{ \frac{1}{2} [\hat{a}^{\dagger}(k)\hat{a}(k) + \hat{a}(k)\hat{a}^{\dagger}(k)]\omega \bigg\}.$$

2. Dirac Spinors

The Dirac equation $(\gamma^{\mu}p_{\mu}-m)\psi(x)=0$ has the following spinor solutions $u^{(1)}, u^{(2)}, v^{(1)}$ and $v^{(2)}$:

$$\begin{split} u^{(1)} &= \sqrt{E+m} \begin{pmatrix} 1 \\ 0 \\ \frac{p_z}{E+m} \\ \frac{p_x + i p_y}{E+m} \end{pmatrix}, \qquad \qquad u^{(2)} &= \sqrt{E+m} \begin{pmatrix} 0 \\ 1 \\ \frac{p_x - i p_y}{E+m} \\ \frac{-p_z}{E+m} \end{pmatrix}, \\ v^{(1)} &= \sqrt{E+m} \begin{pmatrix} \frac{p_x - i p_y}{E+m} \\ \frac{-p_z}{E+m} \\ 0 \\ 1 \end{pmatrix}, \qquad \qquad v^{(2)} &= -\sqrt{E+m} \begin{pmatrix} \frac{p_z}{E+m} \\ \frac{p_x + i p_y}{E+m} \\ 1 \\ 0 \end{pmatrix} \end{split}$$

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 2 Tutor: Dr. Michael Holzbock

(a) Show that for $\vec{p}=(0,0,p_z),$ the Dirac spinor $u^{(1)}$ takes the form

$$u^{(1)} = \begin{pmatrix} \sqrt{E+m} \\ 0 \\ \sqrt{E-m} \\ 0 \end{pmatrix}.$$

Also calculate $u^{(2)}, v^{(1)}$ and $v^{(2)}$ for this case.

- (b) Show that the spinors given in part (a) are eigenstates under the spin operator S_z and determine the eigenvalues.
- (c) How do the spinors in (a) look in the non-relativistic limit $(\vec{p}^2 \ll m^2)$?
- (d) How do the spinors in (a) look in the ultra-relativistic limit $(\vec{p}^2 \gg m^2)$?

3. Intrinsic Parity

A Δ^0 baryon (quark content *udd*, spin 3/2) decays through the strong force as $\Delta^0 \rightarrow p\pi^-$.

- (a) Which angular momenta of the $p\pi^-$ system are allowed by angular momentum conservation?
- (b) From the decay angle distribution of the decay products an angular momentum l = 1 can be derived. What is thus the intrinsic parity of the Δ^0 ?
- (c) Why can the intrinsic parity of K^+ mesons not be determined from the $K^+ \rightarrow \pi^+\pi^-$ decay? Propose a reaction with which the parity of the K^+ can be measured in principle. Draw the corresponding quark-line diagrams.
- **4. Pion Decay** Consider the pion decay (assume massless neutrinos):

 $\pi^+ \rightarrow e^+ + \nu_e \,, \quad \pi^+ \rightarrow \mu^+ + \nu_\mu \,.$

- (a) Draw the quark-line diagram for the decay $\pi^+ \rightarrow e^+ + \nu_e$, including the force carrier particle. Also draw the spin configuration of the decay products.
- (b) Because of its finite mass, the antilepton has a small right-handed component, proportional to $1 \beta_{\ell}$. The transition probability $|\mathcal{M}_{\pi\ell}|^2$ is therefore proportional to $1 \beta_{\ell}$. Derive an equation for $1 \beta_{\ell}$, by first deriving equations for the momentum p_{ℓ} and the energy E_{ℓ} of the charged lepton ℓ as function of the lepton mass m_{ℓ} and pion mass m_{π} .
- (c) Which decay happens more often and why? What would happen if $m_e = m_\mu = 0$?
- (d) Which process does one get when parity conjugation \hat{P} is applied to the decay $\pi^+ \rightarrow e^+\nu_e$? Sketch the spin configuration of the decay products. Is this process allowed?