

MAX-PLANCK-INSTITUT FÜR PHYSIK

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 2

Tutor: Dr. Michael Holzbock

1. Second Quantization The path to quantum field theory involves roughly two steps: the change from a discrete mechanical system to fields with infinite degrees of freedom and a quantization of these fields. For the latter consider a highly simplified (spin-0, one-dimensional) Lagrangian of the field $\hat{\phi}(x, t)$

$$
\hat{\mathcal{L}}=\frac{1}{2}\left(\frac{\partial \hat{\phi}}{\partial t}\right)^{2}-\frac{1}{2}\left(\frac{\partial \hat{\phi}}{\partial x}\right)^{2}
$$

Following the ideas of quantum mechanics, $\hat{\phi}(x, t)$ can be expressed as a Fourier expansion of the creation and annihilation operators \hat{a}^{\dagger} and \hat{a} :

$$
\hat{\phi}(x, t)=\int \frac{d k}{2 \pi \sqrt{2 \omega}}\left[\widehat{a}(k) e^{i k x-i \omega t}+\hat{a}^{\dagger} a(k) e^{-i k x+i \omega t}\right]
$$

(a) Calculate the 'momentum field' $\hat{\pi}(x, t)$.
(b) Verify that imposing the following commutation relations for \hat{a} and \hat{a}^{\dagger}

$$
\begin{aligned}
{\left[\hat{a}(k), \hat{a}^{\dagger}\left(k^{\prime}\right)\right] } & =2 \pi \delta\left(k-k^{\prime}\right) \\
{\left[\hat{a}(k), \hat{a}\left(k^{\prime}\right)\right] } & =\left[\hat{a}^{\dagger}(k), \hat{a}^{\dagger}\left(k^{\prime}\right)\right]=0
\end{aligned}
$$

are consistent with the equal time commutation relation between $\hat{\pi}$ and $\hat{\phi}$

$$
[\hat{\phi}(x, t), \hat{\pi}(y, t)]=i \delta(x-y) .
$$

(c) Consider the unequal time commutator $D\left(x_{1}, x_{2}\right)=\left[\hat{\phi}\left(\vec{x}_{1}, t_{1}\right), \hat{\phi}\left(\vec{x}_{2}, t_{2}\right)\right]$, where $\hat{\phi}$ is a massive KG field in three dimensions. Show that

$$
D\left(x_{1}, x_{2}\right)=\int \frac{d k^{3}}{(2 \pi)^{3} 2 E}\left[e^{-i k \cdot\left(x_{1}-x_{2}\right)}-e^{i k \cdot\left(x_{1}-x_{2}\right)}\right]
$$

where $k \cdot\left(x_{1}-x_{2}\right)=E\left(t_{1}-t_{2}\right)-\vec{k} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)$ and $E=\left(\vec{k}^{2}+m^{2}\right)^{1 / 2}$. Show that $D\left(x_{1}, x_{2}\right)$ vanishes for $t_{1}=t_{2}$ and use its Lorentz invariance to show that it vanishes for all space-like separations $\left(x_{1}-x_{2}\right)^{2}<0$.
(d) Derive the expression for the Hamiltonian \hat{H}.
(e) Insert the expansions of $\hat{\phi}$ and $\hat{\pi}$ into your result of (d) and verify that

$$
\hat{H}=\int \frac{d k}{2 \pi}\left\{\frac{1}{2}\left[\hat{a}^{\dagger}(k) \hat{a}(k)+\hat{a}(k) \hat{a}^{\dagger}(k)\right] \omega\right\} .
$$

2. Dirac Spinors

The Dirac equation $\left(\gamma^{\mu} p_{\mu}-m\right) \psi(x)=0$ has the following spinor solutions $u^{(1)}, u^{(2)}, v^{(1)}$ and $v^{(2)}$:

$$
\begin{aligned}
& u^{(1)}=\sqrt{E+m}\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
\frac{p_{x}+i p_{y}}{E+m}
\end{array}\right), \\
& u^{(2)}=\sqrt{E+m}\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{x}-i p_{y}}{E+p_{z}} \\
\frac{-p_{z}}{E+m}
\end{array}\right), \\
& v^{(1)}=\sqrt{E+m}\left(\begin{array}{c}
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m} \\
0 \\
1
\end{array}\right), \\
& v^{(2)}=-\sqrt{E+m}\left(\begin{array}{c}
\frac{p_{z}}{E+m} \\
\frac{p_{x}+i p_{y}}{E+m} \\
1 \\
0
\end{array}\right) \text {. }
\end{aligned}
$$

MAX-PLANCK-INSTITUT FÜR PHYSIK

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 2

Tutor: Dr. Michael Holzbock
(a) Show that for $\vec{p}=\left(0,0, p_{z}\right)$, the Dirac spinor $u^{(1)}$ takes the form

$$
u^{(1)}=\left(\begin{array}{c}
\sqrt{E+m} \\
0 \\
\sqrt{E-m} \\
0
\end{array}\right) .
$$

Also calculate $u^{(2)}, v^{(1)}$ and $v^{(2)}$ for this case.
(b) Show that the spinors given in part (a) are eigenstates under the spin operator S_{z} and determine the eigenvalues.
(c) How do the spinors in (a) look in the non-relativistic limit $\left(\vec{p}^{2} \ll m^{2}\right)$?
(d) How do the spinors in (a) look in the ultra-relativistic limit $\left(\vec{p}^{2} \gg m^{2}\right)$?

3. Intrinsic Parity

A Δ^{0} baryon (quark content $u d d$, spin $3 / 2$) decays through the strong force as $\Delta^{0} \rightarrow p \pi^{-}$.
(a) Which angular momenta of the $p \pi^{-}$system are allowed by angular momentum conservation?
(b) From the decay angle distribution of the decay products an angular momentum $l=1$ can be derived. What is thus the intrinsic parity of the Δ^{0} ?
(c) Why can the intrinsic parity of K^{+}mesons not be determined from the $K^{+} \rightarrow \pi^{+} \pi^{-}$ decay? Propose a reaction with which the parity of the K^{+}can be measured in principle. Draw the corresponding quark-line diagrams.
4. Pion Decay Consider the pion decay (assume massless neutrinos):

$$
\pi^{+} \rightarrow e^{+}+\nu_{e}, \quad \pi^{+} \rightarrow \mu^{+}+\nu_{\mu}
$$

(a) Draw the quark-line diagram for the decay $\pi^{+} \rightarrow e^{+}+\nu_{e}$, including the force carrier particle. Also draw the spin configuration of the decay products.
(b) Because of its finite mass, the antilepton has a small right-handed component, proportional to $1-\beta_{\ell}$. The transition probability $\left|\mathcal{M}_{\pi \ell}\right|^{2}$ is therefore proportional to $1-\beta_{\ell}$. Derive an equation for $1-\beta_{\ell}$, by first deriving equations for the momentum p_{ℓ} and the energy E_{ℓ} of the charged lepton ℓ as function of the lepton mass m_{ℓ} and pion mass m_{π}.
(c) Which decay happens more often and why? What would happen if $m_{e}=m_{\mu}=0$?
(d) Which process does one get when parity conjugation \hat{P} is applied to the decay $\pi^{+} \rightarrow$ $e^{+} \nu_{e}$? Sketch the spin configuration of the decay products. Is this process allowed?

