

MAX-PLANCK-INSTITUT FÜR PHYSIK

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 5
Tutor: Dr. Michael Holzbock

1. Gamma Gymnastics

Prove the following identities without using a particular representation of the Dirac matrices:
(a) $\gamma^{\mu} \gamma_{\mu}=4$
(b) $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu}$
(c) $\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma_{\mu}=4 g^{\mu \lambda}$
(d) $\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\kappa} \gamma_{\mu}=-2 \gamma^{\kappa} \gamma^{\lambda} \gamma^{\nu}$
(e) $\gamma^{0} \gamma^{\mu \dagger}=\gamma^{\mu} \gamma^{0}$
(f) $\gamma^{\mu} \gamma_{5}+\gamma_{5} \gamma^{\mu}=0$
(g) $\gamma_{5} \gamma_{5}=1$

2. Fermi Theory of Neutrino-Electron Scattering

The idea of Fermi's description of the weak interactions was keep to the analogy with the well-established electromagnetic interaction but to omit the propagator term to account for the extremely small range of weak interactions. Thus he arrived at a pointlike interaction with the strength of the interaction described by a constant G_{F} which was assumed to be universal for all processes of weak interactions.
Consider the scattering of muon neutrinos on electrons, where a muon together with an electron neutrino can be created.
(a) In the Fermi theory the lowest-order total cross section for this process is

$$
\sigma=\frac{G_{F}^{2}}{\pi} \cdot s
$$

with the center-of-mass energy $\sqrt{s}=2\left|\vec{p}^{*}\right|$, where \vec{p}^{*} is the momentum of one of the fermions in the center-of-mass system. How large is the cross section (in barn) for the scattering of the muon neutrinos with an energy $E_{\nu_{\mu}}=10 \mathrm{GeV}$ (use $G_{F}=$ $1.166 \cdot 10^{-5} \mathrm{GeV}^{-2}$ in natural units)?
(b) As the description assumes a point-like interaction, the following unitarity bound

$$
\frac{G_{F}^{2}}{\pi} s \leq \frac{4 \pi}{s}
$$

holds. At which neutrino energy and which cross section would the bound be violated?
(c) In the electroweak theory the process above is described through the exchange of a W boson rather via point-like interactions. The cross section can be written as

$$
\sigma=\frac{G_{F}^{2}}{\pi} \cdot s \cdot \frac{M_{W}^{2}}{s+M_{W}^{2}}
$$

Draw the Feynman diagram and calculate the maximum possible cross section.

MAX-PLANCK-INSTITUT FÜR PHYSIK

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 5

Tutor: Dr. Michael Holzbock
3. Interconnectivity of e, g and g^{\prime}

Consider the covariant derivative D_{μ} of the $S U(2)_{L} \otimes U(1)_{Y}$ for leptons.
(a) Show that D_{μ} can be written for right-handed electrons as

$$
D_{\mu}^{R}=\partial_{\mu}-i g^{\prime} \cos \theta_{w} A_{\mu}(x)+i g^{\prime} \sin \theta_{w} Z_{\mu}(x)
$$

(b) Show that D_{μ} can be written for left-handed electrons as

$$
\begin{aligned}
D_{\mu}^{L}=\partial_{\mu}+i & \frac{g}{\sqrt{2}}\left(\tau_{+} W_{\mu}^{+}(x)+\tau_{-} W_{\mu}^{-}(x)\right)-i \frac{g \sin \theta_{w}+g^{\prime} \cos \theta_{w}}{2} A_{\mu}(x) \\
& +i \frac{-g \cos \theta_{w}+g^{\prime} \sin \theta_{w}}{2} Z_{\mu}(x)
\end{aligned}
$$

where τ_{+}and τ_{-}are the isospin raising and lowering operators:

$$
\tau_{+}=\frac{1}{2}\left(\tau_{1}+i \tau 2\right) \quad \tau_{-}=\frac{1}{2}\left(\tau_{1}-i \tau 2\right)
$$

with Pauli matrices τ_{i}.
(c) With the previous results show that

$$
e=g^{\prime} \cos \theta_{w}=g \sin \theta_{w} .
$$

In a similar fashion show that the absence of a neutrino-photon coupling leads to

$$
g^{\prime} \cos \theta_{w}=g \sin \theta_{w}
$$

4. Representations of $\operatorname{SU}(2)$

The group $\operatorname{SU}(2)$ corresponds to the set of special unitary transformations which act on complex 2D vectors under the operation of matrix multiplication. The natural representation is that of 2×2 matrices acting on 2D vectors. The group has $2^{2}-1=3$ traceless, hermitian generators labeled as J_{1}, J_{2} and J_{3}.
(a) Show that $\operatorname{SU}(\mathrm{n})$ indeed fulfills the definitions of a group G, i.e.
i. Closure: $\forall a, b \in G, a \cdot b \in G$
ii. Associativity: $\forall a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$
iii. Identity: existence of a neutral element e so that $a \cdot e=a$
iv. Inverse: existence of an inverse element a^{-1} so that $a \cdot a^{-1}=e$
(b) Form a 2 D representation of $\mathrm{SU}(2)$, i.e. J_{1}, J_{2} and J_{3}. by choosing the following two orthogonal states as base vectors

$$
\binom{1}{0} \equiv\left|\frac{1}{2},+\frac{1}{2}\right\rangle \quad \text { and } \quad\binom{0}{1} \equiv\left|\frac{1}{2},-\frac{1}{2}\right\rangle
$$

(c) Form an alternative 2D representation of $\operatorname{SU}(2)$ by choosing the following two orthogonal states as base vectors

$$
\binom{1}{0} \equiv \frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},+\frac{1}{2}\right\rangle+\left|\frac{1}{2},-\frac{1}{2}\right\rangle\right) \quad \text { and } \quad\binom{0}{1} \equiv \frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},+\frac{1}{2}\right\rangle-\left|\frac{1}{2},-\frac{1}{2}\right\rangle\right)
$$

Testing the Standard Model I
WiSe 2021, Prof. Hubert Kroha
Tutorial Set 5
Tutor: Dr. Michael Holzbock

References

[1] Griffiths, David J. Introduction to Elementary Particles; 2nd rev. version. Wiley, 2008.
[2] Thomson, Mark. Modern Particle Physics. Cambridge University Press, 2013.
[3] Haywood, Stephen. Symmetries and Conservation Laws in Particle Physics. Imperial College Press, 2011.

