

MAX-PLANCK-INSTITUT FÜR PHYSIK

Testing the Standard Model I WiSe 2021, Prof. Hubert Kroha

Tutorial Set 7
Tutor: Dr. Michael Holzbock

1. Trace Theorems

For the calculation of matrix elements so-called trace theorems become useful. Prove the identity of the following relations:
(a) $\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu}\right\}=4 g^{\mu \nu}$
(b) $\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right\}=0$
(c) $\operatorname{Tr}\left\{\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right\}=0$.

2. Completeness Relation

Show that the Dirac spinors for particles and anti-particles satisfy the following 'completeness' relations

$$
\sum_{s}^{2} u_{s} \bar{u}_{s}=\left(\gamma^{\mu} p_{\mu}+m\right) \quad \text { and } \quad \sum_{r}^{2} v_{r} \bar{v}_{r}=\left(\gamma^{\mu} p_{\mu}-m\right)
$$

where the sums run over the two possible spin states.

3. Electron-Positron Annihilation I

Consider the annihilation of an electron-positron pair into a muon pair: $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$.
(a) Draw the lowest-order Feynman diagram(s) of this process.
(b) By applying the Feynman rules, derive the expression for the matrix element \mathcal{M}.
(c) Compute the expression for the spin-averaged matrix element squared $\langle | \mathcal{M}\left\rangle^{2}\right.$ by squaring and summing over the spins of the initial state as well as averaging over the spins of the final state.

References

[1] Griffiths, David J. Introduction to Elementary Particles; 2nd rev. version. Wiley, 2008.
[2] Thomson, Mark. Modern Particle Physics. Cambridge University Press, 2013.

