Testing the Standard Model of Elementary Particle Physics I

First lecture

Dr. Dominik Duda

5th November 2020

1.1 Introduction to Elementary Particle Physics

Introduction & Table of content

- This first lecture aims to give an overview of the various topics that we will discuss during this semester (some parts will be discussed in *Testing the Standard Model of Elementary Particle Physics II*)
 - So we will not go into too much detail on the various topics
 - Will be more detailed starting from next week
- Content:
 - The Standard Model (SM) of particle physics in a nutshell:
 - Particle zoo (particle content of the SM)
 - Fundamental interactions
 - The Lagrangian of the SM
 - Experimental aspects:
 - The LHC
 - Modern particle detectors (ATLAS, CMS & LHCb)
 - Particle identification
 - Recent results on measurements and searches

Standard model of particle physics in a nutshell

- The Standard Model (SM) describes the elementary constituents of nature, and the fundamental forces with which those particles interact with each other
- Over time and through many experiments, the Standard Model has become one of the most extensively tested theories in physics
- After the discovery of the Higgs boson in 2012, the particle content of the SM is finally complete

- However, the SM does not answer all phenomena seen in nature:
 - Gravity
 - Origin of the large asymmetry between matter and anti-matter
 - Neutrino masses
 - Dark matter
 - Naturalness problem

Standard Model of Elementary Particles

https://www.particlezoo.net

tauneutrino

Particle zoo (leptons):

Symbol	Mass	Electric charge	Year of discovery
V _e	< 2 eV		1956: by C. Cowan & F. Reines (inverse β decay)
e	0.511 MeV	-1	1897: by J.J. Thomson (cathode rays)
ν _μ	< 0.19 MeV		1962: by L. Lederman & M. Schwartz
μ	105.7 MeV	-1	1936: by C. D. Anderson & S. Neddermeyer (cosmic radiation)
V _T	< 18.2 MeV		2000: DONUT Experiment
T	1.777 GeV	-1	1975: by Mark I at SLAC

Masses are taken from the listings of the **Particle Data Group** (uncertainties are symmetrized)

Particle zoo (quarks):

Symbol	Mass	Electric charge	Year of discovery
u	2.16±0.38 MeV	+2/3e	~1964
d	4.67±0.32 MeV	-1/3e	~1964
S	93±8 MeV	-1/3e	~1964
С	1.27±0.02 GeV	+2/3e	1974: at SLAC and BNL (via J/Ψ)
b	4.18±0.03 GeV	-1/3e	1977: by E288 experiment at Fermilab
t	172.9±0.4 GeV	+2/3e	1994: by CDF & D0 at the Tevatron

Masses are taken from the listings of the Particle Data Group (uncertainties are symmetrized)

Particle zoo (bosons):

Symbol	Mass	Electric charge	Year of discovery
Y			1900-1924: by e.g. Planck
g			1979: by experiments at PETRA (DESY)
W⁺/W⁻	80.385±0.01 GeV	+1/-1	1983: by UA1 and UA2 at Super Proton Synchrotron
Z ⁰	91.1876±0.002 GeV		1983: by UA1 and UA2 at Super Proton Synchrotron
Н	125.09±0.4 GeV		2012: by ATLAS & CMS at the LHC

Masses are taken from the listings of the **Particle Data Group** (uncertainties are symmetrized)

Antiparticles

- Every elementary particle is associated with an antiparticle
 - Particles & antiparticles:
 - Have the same mass and lifetime
 - Have opposite charge (e.g. electrical charge or colour charge)
- The electrically neutral bosons (Higgs and Z⁰) are identical with their antiparticles
- It is not verified yet whether neutrinos are identical with their anti-particles or not
 - Majorana neutrino hypothesis vs Dirac neutrino hypothesis
- In the early universe (during the Baryogenesis), a surplus of matter over antimatter was produced.
 - Motivates searches for sources of CP symmetry violation

Fundamental interactions

Interaction	EM	Weak	Strong
Gauge symmetry	U(1)	<i>SU</i> (2)	<i>SU</i> (3)
Theory	QED	GSW	QCD
Gauge boson	Photon	W^\pm , Z^0	8 Gluons
Acts on	electric charge	flavour	colour charge
Range	∞	$10^{-18}\mathrm{m}$	$10^{-15}\mathrm{m}$

Gravitation is not described by SM

Lagrangian of the SM

The Standard Model of particle physics is based on a **quantum field theory.** A Lagrangian is used to describe the particle content of the theory via fields and their interactions:

Physics program at the LHC (and other collider experiments):

- Measurements of particle properties:
 - Cross sections
 - Branching ratios
 - Mass
 - Charge
 - Spin
 - CP state

- Searches for so far unobserved processes or phenomena:
 - Model dependent searches
 - Model independent searches

Experimental setup

The Large Hadron Collider

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight • Instantaneous luminosity

$$\mathcal{L} = fn \frac{N_1 N_2}{A}$$

- N_1 , N_2 = Number of hadrons per bunch
 - n = Number of bunches per beam
 - f = Resolution frequency
 - A = Beam cross section
- Integrated luminosity

$$L = \int \mathcal{L} dt$$

The ATLAS Detector

The CMS Detector

The LHCb Detector

Particle identification

Hadronic particle shower

 Cone shaped jets build from calorimeter clusters or tracks

• Muons

 Combined tracks from Inner Detector and Spectrometer

• Electrons

- Inner Detector (ID) track
- Energy clusters in calorimeter system

• Taus

• Jets with either 1 or 3 ID tracks

Neutrinos

- Pass through the detector without leaving any trace.
- Estimated from energy balance:

$$E_{\mathrm{X,Y}}^{\mathrm{mis}} = -\sum E_{\mathrm{X,Y}}^{\mathrm{obj.}} + E_{\mathrm{X,Y}}^{\mathrm{soft}}$$

Measurements

Measurements

Production cross section times branching ratio measurements of the two the two dominant production modes of the Higgs boson:

- Measurements of particle properties are essential to further our understanding of the Standard Model
 - Used as inputs to theoretical calculations Ο

Higgs boson mass measurement:

Data

120

Interplay between theory and experiment

• Experimental results depend strongly on the precision of theoretical predictions !!!

Searches for physics beyond the Standard Model

Supersymmetry (SUSY)

Search for Supersymmetry (SUSY)

Search for stop quark pair production

• Search for multi-jet final state incl. large amount of missing E_T

Probe phase space regions sensitive to contributions from SUSY signal

Search for Supersymmetry (SUSY)

Search for stop quark pair production

Direct Search for heavy Resonances

- Most searches for diboson resonances in ATLAS and CMS follow the same principle:
 - Perform (quasi) model-independent search for a bump in a smoothly falling mass spectrum
- Events Signal Background Interpretations in generic frameworks: Two Higgs Doublet Model (2HDM) Ο Higgs Triplet models Ο Heavy Vector Triplet (HVT) models Ο **RS** Extra-dimensional models Ο m [GeV]

Direct Search for heavy Resonances

Direct Search for heavy Resonances

In the absence of a signal:

- Derive model dependent exclusion contours
- Set "model independent" limits on the production cross section times branching ratio

Effective field theories

- So far no hints for new physics in direct searches
- What if scale of new physics is outside the reach of the LHC?
 - Search for smooth enhancements in the tails of our observables
 - E.g. from resonances with masses beyond our reach
 - Probing for shape modifications of our observables
 - E.g. from anomalous couplings
- Effective field theories (EFT) allow for model independent approaches to search for such new physics effects

Effective field theory (EFT)

• In EFTs, Lagrangian of the Standard Model of particle physics is supplemented with additional BSM terms:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} rac{c_{i}}{\Lambda} \mathcal{O}_{i}$$

- \mathcal{O}_i are higher dimension operators
- c_i are the so-called Wilson coefficients
 - Specify the strength of a new CP-even (or CP-odd) interaction (i.e. they describe deviation from SM)
- A is mass scale for new particle

Effective field theory (EFT)

