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Reminder: Matrix algebra

The trace of a matrix A:  Tr(A) =) a;

Hermitian conjugate of A is obtained by taking the transpose and then the
complex conjugate:

- i3
A— AT = AT Ca -G
Commuting matrices: [A,B] =AB —BA=0

Non-commuting matrices: [A,B] =AB —BA#0



3  1.2.2 Notations of special relativity '




Notations of special relativity

In special relativity, the components of a four-vector x" are defined by three

spatial coordinates and time.
o Greek letters 4, v, A, ... will be used to indicate components of a four-vector
o Latinindices |, j, k, ... will be used to indicate its spatial components

Contravariant coordinates:

xP = (XO,xl,xz,x3) = (t, X)
Covariant coordinates:

Xg, = (X0, X3, 538 ) = (£, —X)

Lower/raise the indices via:

— - E v L - pv
Xy = GuvX = guwx  and x" = ghx, = E g xy,
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Notations of special relativity

e The Minkowski metric tensor d,. is defined via:

e The distance | between two points x and y in space-time can be
expressed using the Minkowski metric in terms of:

1> = gu (x* — y*) (x* — y¥)



Notations of special relativity

e The scalar product of two vectors A" and BY will be written as:
guA'B” = A,B" = A”B, = A;B° — AB

e Covariant and contravariant derivatives are defined via

0 0 = 0 0
= = | == d b= = —
Ou = G (8t’v> an 7= o, (81? V)
e The wave operator (D'Alembert operator) is defined via:
82
—V2=9,0"

8t2



Notations of special relativity

e The momentum four-vector of a particle is given by:

p" = (E, p) and pu = (E, —p)

where E is the energy of the particle.

e The invariant scalar product of the covariant and contravariant momenta is
denoted by:

plpy=E>—p*=m’

where m is the rest-mass of the particle



Notations of special relativity

e Natural units:

o In discussions on relativistic quantum mechanics (and quantum field theories), it is
customary to use a system of units in which there is only one fundamental unit: i.e. the unit of
mass

m The units of length and time are defined by declaring: h — ]_, C — ]_ .

Quantity Dimension Conversion factor
Mass [M] 1/c2 speed of light
Length [|\/|]-1 he reduced planck constant
Time [M] ! h
Energy [M] 1 To go from energy units (MeV or
GeV) to conventional units we need
Momentum [M] 1/c to multiply by a conversion factor
Electric charge [M]° Vhe
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Relativistic wavefunctions

e Duality between matter and radiation is a striking characteristic of

non-classical physics
o Particle-like behaviour of light (photons)
o Wave-like behaviour of electrons:

1 -

where energy and momentum are defined via:
E=hw , p=hk (withk=27/))

e In quantum theories, quantities are represented by operators which act on the
wavefunctions (their eigenvalues are measurable):

9, _
E—ih D —ihV
I 57 p— —I
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Relativistic wavefunctions

The Schrodinger equation is obtained after inserting the energy and momentum
operators into the non-relativistic representation of the total energy:

ih = <——€2 + V(7 t)) W (F, t) = HV (F, t)

The wavefunctions gain their meaning in the context of the probability density
and probability current density:

2im

P W = (W2 and J= (w* (ﬁu) _ (ﬁu*) \u)
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Relativistic wavefunctions

e The probability density and probability current density follow the continuity
equation:

QD

_i+ﬁ-f:0

— probability is conserved.
e For a free particle we obtain:
p=v » J=pV

i.e. the current density is the product of the probability density and the velocity
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Klein-Gordon equation

e The Klein-Gordon equation describes relativistic scalars (1, K°, Higgs boson)

o Itis obtained after inserting the energy and momentum operators into the relativistic
representation of the total energy of a free particle:

0%
Ot?

E?=p*+ m° P sil

v

ot

from now on:

= 1, c:l‘

p— —iV

= (—62 + m2) b

e After sorting the terms we obtain the Klein-Gordon equation for a free

particle with mass m:

|

82

Ot?

62+m2] o(F,t) = (O+ m?) &(F,t) =0
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Klein-Gordon equation

The same equation is also valid for complex conjugated wavefunctions (i.e.
antiparticles):

(O + m?) &*(7,t) =0

This equation is the relativistic generalisation of the Schrodinger equation
Solutions are given by plane waves like:

O (r,t) = \/—1V exp (i(EF:i: wt))

The energy eigenvalues (obtained after including the wavefunctions into the
Klein-Gordon function) are:

E=+4w=+Vp2+ m?
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Klein-Gordon equation

The same equation is also valid for complex conjugated wavefunctions (i.e.
antiparticles):

(O + m?) &*(7,t) =0

This equation is the relativistic generalisation of the Schrodinger equation
Solutions are given by plane waves like:

O (r,t) = \/—1V exp (i(/??:i: wt))

The energy eigenvalues (obtained after including the wavefunctions into the
Klein-Gordon function) are:

Eigenvalues can be either
positive or negative

E=4w T m?
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Klein-Gordon equation

e Wavefunctions with positive solutions are given via:

| - 0o
o, (rt) = v exp (ikF— iwt) , 3: = +wdy
e Wavefunctions with negative solutions are given via:
1 - ob_
O (F1) = e (ikF’+ iwt) | i = Wb

e Negative values appeared unphysical at first.
o Wavefunctions with negative energy can not be ignored (as the solutions with E > 0 do not

give a complete system of eigenfunctions)

m See example from classical wave equation

Ignoring this term omits waves going
/ to the left as well as standing waves

f(x,t) = aexp(ikx — iwt) + bexp(ikx + iwt)
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Klein-Gordon equation

e Wavefunctions with positive solutions are given via:
Identified as wavefunction
¢+ for antiparticles

1
= —I—w<|>+

- 0
o, (rt) = ﬁexp (ikf'— iwt) , 0 5

e Wavefunctions with negative solutions are given via:

od_
ot

o_(r)t) = % exp (iEF’+ iwt) ; d
e Negative values appeared unphysical at first.

o Wavefunctions with negative energy can not be ignored (as the solutions with E > 0 do not

give a complete system of eigenfunctions)
m See example from classical wave equation

= —wd_

Ignoring this term omits waves going
/ to the left as well as standing waves

f(x,t) = aexp(ikx — iwt) + bexp(ikx + iwt)
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Klein-Gordon equation

The probability density and probability current density for a scalar particle

with positive energy are:
1w . 1k
P=Vm 1T Vm

Solutions with positive energy correspond to a positive probability density,
while solutions with negative energy correspond to a negative probability
density
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Dirac equation

The Dirac equation describes relativistic fermions (spin-'2 particles):

o Developed by Paul Dirac (1928), who was searching for an equation that
a) is of first-order in time to avoid negative energy solutions (as Schrodinger equation)
b) follows the laws of special relativity
o Dirac chose the following ansatz to describe the wavefunctions of a free electron:

oV
— = HV =
'8t

The parameter a,, o,

oV oV oV

v
(9X1 8X2 T 8X3 ) Bm

a,, and B have to be chosen such that the relativistic
relationship between energy and momentum is satisfied: E2

:ﬁZ+m2
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Dirac equation

e Requirement can be achieved if a,, d,, d,, and 8 are hermitian matrices and
follow:

1) a%:agzagzﬁ 1, ojor+ake; =0 for j#=k and o;f+ Pa;=0.

T~

2) Tr(a)=Tr(B)=0

eigenvalues are 1

Thus the dimension of the matrices has to be even. However, dimension N = 2 is not sufficient
because there are only three linear independent hermitian matrices with a trace of O (i.e. the

Pauli matrices):
(01 (0 —i (1 0
171 0) 27\ o) BT \0 -1
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Dirac equation

For N = 4 there are 16 linear independent hermitian matrices. For our problem the matrices

0 0 01 0 0 0O =i
G = 0 01O Ty = 0O 0 /+ O
01 00 0 — 0 O
1 0 0 O 10 0 O
0O 0 1 O 1 0 0 O
s = 0 0 0 -1 B = 01 0 O
1 0 0 O 00 -1 O
0O -1 0 O 0 0 0 -1

are ideal. The Dirac equation can be formulated in a spacetime symmetric way if one
introduces the Gamma matrices:

V=38, 4 =pBa1, 7 =Paz, 7 =pPas
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Dirac equation

For the sake of simplicity, the Gamma matrices are written as a 4-vector:

=0 )
With:
{7 ="+ =2 - 1
() =12, (¥)' ==, (forj=1,2,3)
Thus the Dirac equation can be written as:

(i) — m) W(x) =0
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Dirac equation

The solutions to the Dirac equation are referred to as Dirac Spinors:
W (x) = ur,2(p) exp(—iEt) exp(+ip - X)
W_(x) = vi2(p) exp(+iEt) exp(—ip - X)

with the components:

1 0
_ JE+m 0 t5) = E+ m 1 Spinors of positive
ui(p) =1/ v | = u2(p) = v By energy
Px+iPy Pz
< E+m / | o Bfm
S U
Px—ip Pz
E_+my Eilm
vi(p) = E+m : Efrzn va(p) = / E+m . % Spinors of negative
%4 0 vV 1 energy
1 0
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Dirac equation

The solutions to the Dirac equation are referred to as Dirac Spinors:

U (x) = u12(p) exp(—iEt) exp(+ip - X)
V_(x) = v12(p) exp(+iEt) exp(—ip - X) Eipfr:fme::zﬁs%?no“he direction of

with the components:

Spinors of positive
energy

n PE__’_p’,fqy .
vi(p) = 1/ | Em — 4/ _ pinors of negative
1(p) 4 0 v2(p) v energy
1 0

[ = N 7




Dirac equation

Negative energy solutions:
o Feynman-Stuckelberg interpretation:
m Wavefunctions of negative energies describe (for t — -t) antiparticles moving forward in
time.

1.  Emission of an antiparticle with 4-momentum p# is equivalent to absorbing a
particle with the 4-momentum -p*

2. Absorbing an antiparticle with 4-momentum p* is equivalent to emission of a
particle with the 4-momentum -p*

@ @
e- e+t
E =-E<O E.=+E>0
® ®
> >

X X 28



Dirac equation

e Interpretation of spinors:
e u; 2(p) incoming fermion annihilated at interaction point (E > 0)
e i1 2(p) outgoing fermion created at interaction point (E > 0)
o vi2(p) incoming antifermion created at interaction point (E < 0)
e 1 2(p) outgoing antifermion annihilated at interaction point (E < 0)

e Dirac adjoint spinor is defined as:
v = \IJTfyO
and follows the adjoint Dirac equation:
W (iv*9, —m) =0
e The probability density is defined via:
p= VIV = W2 4 [Wo]? 4 [W3) + |y’
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Dirac equation

Helicity and chirality:
o Helicity is defined as the projection of the spin orientation onto the
direction of the momentum: g ﬁ
)\ = =
Pl
m Fermions with A = +4 have parallel spin and momentum
m Fermions with A = -2 have antiparallel spin and momentum

o Chirality (“Handedness”)
m Left-handed fermions are described via: lDL = PL@D

m Right-handed fermions are described via: 1) = PR

For E >>m, P_is the projection operator for negative helicity and Py is the projection
operator for positive helicity

30



Dirac equation

Helicity and chirality:

o Chirality:
m The projection operators are defined via:
1-— 1
PL: ’YSZP[T, PR:ﬂ':P}E
2 2
with:

vs = in?yty2y3 = 4

P = (Pp)Ty° = ¢Pg
V= (Pr¥)'° = 9P,
m The projection operators follow:

P, = P} Pr = P3

PP = PrP. =0

The chirality operator is defined

via:
/(01
B=L1 0

o |t follows:

v =1
Y5 + v5y* =0
Y5Pr = —Pr

31




Maxwell equation

Using the Maxwell equations (1864) to describe the electromagnetic field:

6 E’ - < — charge density
. - OF . / current density (1)
VxB——=j
ot .

The electric field E and magnetic field B are constrained by two further
equations:

—

V-B=0 and VxE=_—22 (2)

The components of the E and B fields can be expressed by a 3-vector A and
a scalar quantity @:

. . OA

B=V x A and E=—Vo- 5 (3)
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Maxwell equation

These four quantities (3 components from the A vector potential and the
scalar @) transform like the components of a four-vector:

Al = (AO,A’) — (@,%T)
with this definition, the equations (3) can be re-written in a covariant form:

where the components of the field-strength tensor va are the components
of the electric and magnetic fields:

1 2 3
0 E E E F"¥ can be obtained by
— El 0 — B3 Bz replacing the E' with -E'
-E2 B® 0 -B!
-E3 -B2 B! 0
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Maxwell equation

Using the field-strength tensor va and the potential A we can rewrite the
homogeneous Maxwell equations from (2) as:

a,LLFI/)\ "‘az/F)\u + a)\F,UJ/ =0
while the inhomogeneous Maxwell equations from (1) can be expressed as:
g F* =1 (5)

where }VY is a four-vector which incorporates the sources (i.e. the charge
density and the current density):

= (jo,f) = (pﬂ
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Maxwell equation

Gauge freedom:
o We have to deal with a certain degree of ambiguity as the ansatz

A, = Ay + )

(where A is any function of position and time) would satisfy equation (4).
e A change of potential that has no impact on the the field is referred to as gauge
transformation

Exploit gauge freedom and set an additional constraint on potential:

a AH — 0 Lorentz condition
m — <+

i.e. for:

OO\ = 0N = —FA,
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Maxwell equation

e With this gauge choice we can easily combine (4) and (5) to obtain:

e In empty space (i.e. for j* = 0) the Maxwell equation changes to:

~_ Resembles the Klein-Gordon
/A\'u — O <

equation of a massless particle

where AV is identified as the wave function of the photon.

36



Maxwell equation

e The solutions to this equation are plane waves:
p 1 Ll
Al (x) = Wsu (k, \) exp (—ik,x")

1 _
Wsu (k, \) exp (ik,x")

With the wave vector k¥ = p* and the polarisation vector €*:

Al (x) =

1
en(A==£1) =F—=(0,1,=£/,0)

V2

which describes two transverse polarisation states. The longitudinal polarisation
state was eliminated by the Lorentz gauge condition: 9 AL — 0
AR =

37



Proca equation

e The Proca equation describes (relativistic) massive gauge bosons (W*, W, Z):
O+ M) W” =0

e Solutions are plane waves:
o Opposite to photons, the massive gauge bosons have three polarisation states.
m Including a longitudinal polarisation and transverse helicity (A = 0)

1
e (p,A==x1)=F—(0,1,4/,0)
\/5 for:
1
(P, A =0) = £ (p,0,0, E) p" = (E,0,0,p)

The polarisation vectors are independent of the momentum for transversely polarised massive
gauge bosons, but exhibit a linear dependence of the momentum for longitudinally polarised
massive gauge bosons. For high energies: 1

b I
g —
L= P 38







Lagrange formalism (reminder)

e All theories of classical physics can be derived via the principle of least
action:
o The Lagrangian and action are related by:

A= [ % L (ar(8), 6 (), 1)

The Lagrangian L is a function of the coordinates and the velocity, while t, and t,
indicate the initial and final time between which we study the system.

o Among all trajectories that join q(t,) and q(t,), the system will follow the one for which
the action is stationary:

0A =0

i.e. the path for which the variation of the action vanishes. 40



Lagrange formalism (reminder)

e The Euler-Lagrange equations, i.e the equations of motions, follow fromthe § 4 = 0
requirement:
d [ OL B oL
dt \dg,) Ogq,
e Example:

o For a particle of mass m moving in a time-independent potential V(x), we can choose
the Lagrangian as:

1
[ = mez — V(x)

The Euler-Lagrange equation as derived from the Lagrangian is:

%mx = —-VV

as expected from Newton’s second law.



Lagrange formalism (in field theory)

e In field theory, the action becomes a space-time dependent integral of a
Lagrangian:

A= tz dt [ L (8(x).0,0() 9r(t) = o(x)
s ~- g gr(t) = Oue(x)

total Lagrangian L
With the Lagrange density: £ (¢(x), 0,¢(x))

e Requiring the principle of least action to be fulfilled leads to the Lagrange
equation:
9 oL oL
by _
N0uo(x))  9p(x)

42



Lagrange formalism (examples of important Lagrange densities)

e Scalar field (Klein-Gordon equation):
L= % ((0,9) (0"®) — m*®?] ‘ (O+m?)®=0
e Dirac field (Dirac equation):
L=V(iv"d, — m)W¥ ‘ (iv"0, —m)V =0

e Electromagnetic field (Maxwell equation)

1

L=—=F,F"
411 ‘ OA* =0

5 (OuA, = 0,A,) (0" A — 3" AM)

43



Lagrange formalism (examples of important Lagrange densities)

e Massive vector bosons like W*, W-, Z° (Proca equation):

1 1
L= =7 (0uW, = ,W,) (0"W" — 0"W") + §M2W“WM

l width: O, W" =0

O+ M) WY =0

e Quantum electrodynamic (QED):

U 1
Loep =V (iv*0, — m) W — jHA, — ZFMVF‘“’

width: j = qU~HWV »



1.2.5 Collisions




Relativistic Collisions

In a relativistic collision, energy and momentum are always conserved (i.e.
all four components of the energy-momentum four-vector are conserved):

1. Energy is conserved: E,+ Eg = E- + Ep for:

2. Momentum is conserved: pa + pg = pc + pPp A+B—-C+D

3. Kinetic energy may or may not be conserved

1. and 2. can be combined into a single expression: PA+ Pg = Pc + Pp

Collisions can be classified as “sticky”, “explosive” or “elastic”, depending

on whether the kinetic energies decreases, increases or remains the same:
1. Sticky: kinetic energy decreases, rest energy and mass increase

2. Explosive: kinetic energy increases, rest energy and mass decrease

3. Elastic: kinetic energy is conserved, rest energy and mass are conserved

46



Relativistic Collisions

Note:
e Except for elastic collisions the rest mass is not conserved.
o Inthe decay m° — y +y the initial mass was 135 MeV, but the final mass is zero. l.e.
rest mass of the pion is converted into kinetic energy.
e If the rest mass of the initial particles is conserved, then a collision must have been

elastic:
o In elementary particle physics this is only the case if initial and final state particles are
identical:

m Electron-proton scattering: e+ p — e +p
m Moller scattering: e + e — e + €
m Bhabha scattering: e + e* > e + e

47



Relativistic Collisions

Example 1: A pion (at rest) decays into a muon and neutrino: m* — p* +v,

o Question: What is the energy of the muon ?

o Conservation of energy and momentum require:
A A A
Pr =Py +p or B, = Pa = Py
Pr X = Pux T Py or Pv, X = Pr, X — Pu,\

m Here: we use A as the space-time index.

A A A A A
Py Pv A = PrPrx—  PuPrx  —  PrPux T PuPu
:mg :mgr :EWE/,L_ﬁ’iTﬁM :EMEﬂ'_ﬁHﬁﬂ' :mﬁ

~~~ N : \P/P,u 'u\/ p“\p/ o

~0 mx =0 =My =0

m p

m2 —l—m2

2m;
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Relativistic Collisions

Example: Production of antiprotons at the Bevatron via: pt+p—p+p+p+p

o Question: What is the threshold energy for this reaction ?

o Solution: lab frame:

m Study left side of reaction in Lab frame:
o—» O

Pror.Las = (E +m,|[p],0,0) g g

m Study right side of reaction in CM frame (with all for finale Before
state particles being at rest): M frame:

pff‘()T,Cl\«'I = (4m,0,0,0)

m  While both four-vectors are different, their invariant masses ©—> <©
are not:

Before

p _ p
Py, TOT,LABPTOT LAB — Pu, TOT,CMPTOT CM

m Thus: (E+m)*—p?=(4m)’

and finally: ‘ E=7m ‘ i.e. roughly 6 GeV

In CM-frame:
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