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Reminder: Matrix algebra 

● The trace of a matrix A:

● Hermitian conjugate of A is obtained by taking the transpose and then the 
complex conjugate:  

● Commuting matrices:   

● Non-commuting matrices:



 1.2.2  Notations of special relativity
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Notations of special relativity

● In special relativity, the components of a four-vector xμ are defined by three 
spatial coordinates and time.
○ Greek letters μ, ν, λ, ...  will be used to indicate components of a four-vector 
○ Latin indices i, j, k, ... will be used to indicate its spatial components

● Contravariant coordinates:  

● Covariant coordinates:  

● Lower/raise the indices via: 
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Notations of special relativity

● The Minkowski metric tensor gμν is defined via:

● The distance l between two points x and y in space-time can be 
expressed using the Minkowski metric in terms of:
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Notations of special relativity

● The scalar product of two vectors Aμ and Bμ will be written as:

● Covariant and contravariant derivatives are defined via 

     and

● The wave operator (D'Alembert operator) is defined via: 
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Notations of special relativity

● The momentum four-vector of a particle is given by:

where E is the energy of the particle. 

    and

● The invariant scalar product of the covariant and contravariant momenta is 
denoted by: 

where m is the rest-mass of the particle
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Notations of special relativity
● Natural units: 

○ In discussions on relativistic quantum mechanics (and quantum field theories), it is 
customary to use a system of units in which there is only one fundamental unit: i.e. the unit of 
mass

■ The units of length and time are defined by declaring: 

Quantity Dimension Conversion factor
Mass [M] 1/c2

Length [M]-1 ℏc

Time [M]-1 ℏ

Energy [M] 1

Momentum [M] 1/c

Electric charge [M]0 √ℏc

To go from energy units (MeV or 
GeV) to conventional units we need 
to multiply by a conversion factor 

speed of light

reduced planck constant



         1.2.3 Relativistic wavefunctions
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Relativistic wavefunctions

● Duality between matter and radiation is a striking characteristic of 
non-classical physics 
○ Particle-like behaviour of light (photons)
○ Wave-like behaviour of electrons:

● In quantum theories, quantities are represented by operators which act on the 
wavefunctions (their eigenvalues are measurable):  

where energy and momentum are defined via: 



14

Relativistic wavefunctions
● The Schrödinger equation is obtained after inserting the energy and momentum 

operators into the non-relativistic representation of the total energy:

● The wavefunctions gain their meaning in the context of the probability density 
and probability current density:
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Relativistic wavefunctions
● The probability density and probability current density follow the continuity 

equation:

      →  probability is conserved.

● For a free particle we obtain:

  i.e. the current density is the product of the probability density and the velocity  
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Klein-Gordon equation 
● The Klein-Gordon equation describes relativistic scalars (π±, K0, Higgs boson)

○ It is obtained after inserting the energy and momentum operators into the relativistic 
representation of the total energy of a free particle:

    from now on:

● After sorting the terms we obtain the Klein-Gordon equation for a free 
particle with mass m:  



17

Klein-Gordon equation 
● The same equation is also valid for complex conjugated wavefunctions (i.e. 

antiparticles): 

● This equation is the relativistic generalisation of the Schrödinger equation
● Solutions are given by plane waves like:  

● The energy eigenvalues (obtained after including the wavefunctions into the 
Klein-Gordon function) are:
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Klein-Gordon equation 
● The same equation is also valid for complex conjugated wavefunctions (i.e. 

antiparticles): 

● This equation is the relativistic generalisation of the Schrödinger equation
● Solutions are given by plane waves like:  

● The energy eigenvalues (obtained after including the wavefunctions into the 
Klein-Gordon function) are:

Eigenvalues can be either 
positive or negative
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Klein-Gordon equation 

● Negative values appeared unphysical at first.
○ Wavefunctions with negative energy can not be ignored (as the solutions with E > 0 do not 

give a complete system of eigenfunctions) 
■ See example from classical wave equation 

● Wavefunctions with positive solutions are given via: 

● Wavefunctions with negative solutions are given via: 

Ignoring this term omits waves going 
to the left as well as standing waves
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Klein-Gordon equation 

● Negative values appeared unphysical at first.
○ Wavefunctions with negative energy can not be ignored (as the solutions with E > 0 do not 

give a complete system of eigenfunctions) 
■ See example from classical wave equation 

● Wavefunctions with positive solutions are given via: 

● Wavefunctions with negative solutions are given via: 

Ignoring this term omits waves going 
to the left as well as standing waves

Identified as wavefunction 
for antiparticles  
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Klein-Gordon equation 
● The probability density and probability current density for a scalar particle 

with positive energy are: 

● Solutions with positive energy correspond to a positive probability density, 
while solutions with negative energy correspond to a negative probability 
density
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Dirac equation 

● The Dirac equation describes relativistic fermions (spin-½ particles):
○ Developed by Paul Dirac (1928), who was searching for an equation that

a) is of first-order in time to avoid negative energy solutions (as Schrödinger equation) 
b) follows the laws of special relativity

○ Dirac chose the following ansatz to describe the wavefunctions of a free electron:  

● The parameter α1, α2, α3, and β have to be chosen such that the relativistic 
relationship between energy and momentum is satisfied:  
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Dirac equation 
● Requirement can be achieved if α1, α2, α3, and β are hermitian matrices and 

follow: 

eigenvalues are ±1 

1)

2)

Thus the dimension of the matrices has to be even. However, dimension N = 2 is not sufficient 
because there are only three linear independent hermitian matrices with a trace of 0 (i.e. the 
Pauli matrices):
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Dirac equation 
For N = 4 there are 16 linear independent hermitian matrices.  For our problem the matrices

are ideal. The Dirac equation can be formulated in a spacetime symmetric way if one 
introduces the Gamma matrices:   
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Dirac equation 
For the sake of simplicity, the Gamma matrices are written as a 4-vector:   

Thus the Dirac equation can be written as: 

With: 
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Dirac equation 
● The solutions to the Dirac equation are referred to as Dirac Spinors: 

Spinors of positive 
energy 

Spinors of negative 
energy 

with the components:



27

Dirac equation 
● The solutions to the Dirac equation are referred to as Dirac Spinors: 

Spinors of positive 
energy 

Spinors of negative 
energy 

with the components:

Representation of the direction of 
the fermion spin



Dirac equation 
● Negative energy solutions:

○ Feynman-Stückelberg interpretation:
■ Wavefunctions of negative energies describe (for t → -t)  antiparticles moving forward in 

time. 
1. Emission of an antiparticle with 4-momentum pμ is equivalent to absorbing a 

particle with the 4-momentum -pμ 
2. Absorbing an antiparticle with 4-momentum pμ is equivalent to emission of a 

particle with the 4-momentum -pμ 
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Dirac equation 

●           incoming fermion annihilated at interaction point (E > 0)  
●           outgoing fermion created at interaction point (E > 0)
●           incoming antifermion created at interaction point (E < 0)
●           outgoing antifermion annihilated at interaction point (E < 0)

● Dirac adjoint spinor is defined as:

● Interpretation of spinors:

and follows the adjoint Dirac equation:

● The probability density is defined via:
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Dirac equation 
● Helicity and chirality:

○ Helicity is defined as the projection of the spin orientation onto the 
direction of the momentum: 

■ Fermions with λ = +½ have parallel spin and momentum
■ Fermions with λ = -½ have antiparallel spin and momentum

○ Chirality (“Handedness”) 

■ Left-handed fermions are described via:   

■ Right-handed fermions are described via:

For E >> m, PL is the projection operator for negative helicity and PR is the projection 
operator for positive helicity 
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Dirac equation 
● Helicity and chirality:

○ Chirality: 
■ The projection operators are defined via:

          with:

■ The projection operators follow:

● The chirality operator is defined 
via:

○ It follows:
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Maxwell equation

● Using the Maxwell equations (1864) to describe the electromagnetic field:

current density

charge density

● The electric field E and magnetic field B are constrained by two further 
equations:

    and

● The components of the E and B fields can be expressed by a 3-vector A and 
a scalar quantity φ: 

    and (3)

(1)

(2)
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Maxwell equation

where the components of the field-strength tensor Fμν are the components 
of the electric and magnetic fields:

   with this definition, the equations (3) can be re-written in a covariant form:

● These four quantities (3 components from the A vector potential and the 
scalar φ) transform like the components of a four-vector:

Fμν can be obtained by 
replacing the Ei with -Ei

(4)
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Maxwell equation
● Using the field-strength tensor Fμν and the potential A we can rewrite the 

homogeneous Maxwell equations from (2) as: 

while the inhomogeneous Maxwell equations from (1) can be expressed as:

where jν is a four-vector which incorporates the sources (i.e. the charge 
density and the current density): 

(5)
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Maxwell equation
● Gauge freedom: 

○ We have to deal with a certain degree of ambiguity as the ansatz    

(where λ is any function of position and time) would satisfy equation (4).
● A change of potential that has no impact on the the field is referred to as gauge 

transformation    

● Exploit gauge freedom and set an additional constraint on potential: 

i.e. for: 

Lorentz condition
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Maxwell equation
● With this gauge choice we can easily combine (4) and (5) to obtain:

 

● In empty space (i.e. for jμ = 0) the Maxwell equation changes to: 

where Aμ is identified as the wave function of the photon. 

Resembles the Klein-Gordon 
equation of a massless particle 



37

Maxwell equation
● The solutions to this equation are plane waves: 

 

With the wave vector kμ = pμ and the polarisation vector εμ:

which describes two transverse polarisation states. The longitudinal polarisation 
state was eliminated by the Lorentz gauge condition:
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Proca equation
● The Proca equation describes (relativistic) massive gauge bosons  (W+, W-, Z):

● Solutions are plane waves:
○ Opposite to photons, the massive gauge bosons have three polarisation states.

■ Including a longitudinal polarisation and transverse helicity (λ = 0)

The polarisation vectors are independent of the momentum for transversely polarised massive 
gauge bosons, but exhibit a linear dependence of the momentum for longitudinally polarised 
massive gauge bosons. For high energies: 

for:



1.2.4  Lagrange formalism
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Lagrange formalism (reminder)
● All theories of classical physics can be derived via the principle of least 

action:
○ The Lagrangian and action are related by:

○ Among all trajectories that join q(t1) and q(t2), the system will follow the one for which 
the action is stationary:

 

The Lagrangian L is a function of the coordinates and the velocity, while t1 and t2 
indicate the initial and final time between which we study the system. 

i.e. the path for which the variation of the action vanishes.   



41

Lagrange formalism (reminder)
● The Euler-Lagrange equations, i.e the equations  of motions, follow from the 

requirement:    

● Example:
○ For a particle of mass m moving in a time-independent potential V(x),  we can choose 

the Lagrangian as:  

The Euler-Lagrange equation as derived from the Lagrangian is:

as expected from Newton’s second law.
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Lagrange formalism (in field theory)
● In field theory, the action becomes a space-time dependent integral of a 

Lagrangian:   

With the Lagrange density:  

● Requiring the principle of least action to be fulfilled leads to the Lagrange 
equation:
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Lagrange formalism (examples of important Lagrange densities)

● Scalar field (Klein-Gordon equation):

● Dirac field (Dirac equation): 

● Electromagnetic field (Maxwell equation)
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Lagrange formalism (examples of important Lagrange densities)

● Massive vector bosons like W+, W-, Z0 (Proca equation):

● Quantum electrodynamic (QED):

width:

width:



            1.2.5  Collisions 
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Relativistic Collisions 
● In a relativistic collision, energy and momentum are always conserved (i.e. 

all four components of the energy-momentum four-vector are conserved):

1. Energy is conserved: 

2. Momentum is conserved: 

3. Kinetic energy may or may not be conserved

1. and 2. can be combined into a single expression:  

for:

● Collisions can be classified as “sticky”, “explosive” or “elastic”, depending 
on  whether the kinetic energies decreases, increases or remains the same:
1. Sticky: kinetic energy decreases, rest energy and mass increase 
2. Explosive: kinetic energy increases, rest energy and mass decrease
3. Elastic: kinetic energy is conserved, rest energy and mass are conserved
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Relativistic Collisions 
Note: 
● Except for elastic collisions the rest mass is not conserved. 

○ In the decay  π0 → γ + γ the initial mass was 135 MeV, but the final mass is zero. I.e. 
rest mass of the pion is converted into kinetic energy. 

● If the rest mass of the initial particles is conserved, then a collision must have been 
elastic:

○ In elementary particle physics this is only the case if initial and final state particles are 
identical: 

■ Electron-proton scattering: e- + p → e- + p 
■ Møller scattering: e- + e- → e- + e- 
■ Bhabha scattering: e- + e+ → e- + e+ 
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Relativistic Collisions 
● Example 1: A pion (at rest) decays into a muon and neutrino:  π+ → μ+ + νμ 

○ Question: What is the energy of the muon ?

○ Conservation of energy and momentum require:

■ Here: we use λ as the space-time index. 

or

or
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Relativistic Collisions 
● Example: Production of antiprotons at the Bevatron via:  

○ Question: What is the threshold energy for this reaction ?
○ Solution: 

■ Study left side of reaction in Lab frame:

■ Study right side of reaction in CM frame (with all for finale 
state particles being at rest):

■ While both four-vectors are different, their invariant masses 
are not:

■ Thus: 

and finally:                           i.e. roughly 6 GeV

lab frame:

CM frame:

In CM-frame:


