Testing the Standard Model of Elementary Particle Physics I

Second lecture

Dr. Dominik Duda

12th November 2020

1.2 Relativistic quantum mechanics

Table of content

- Reminder of matrix algebra
- Notations of special relativity
- Relativistic wavefunctions
- Schrödinger equation
- Klein-Gordon equation
- Dirac equation
- Maxwell equation
- Proca equation
- Reminder of Lagrange formalism
- Collisions

1.2.1 Reminder of matrix algebra

Reminder: Matrix algebra

- \quad The trace of a matrix $\mathbf{A}: \quad \operatorname{Tr}(A)=\sum_{i}^{n} a_{i i}$
- Hermitian conjugate of \mathbf{A} is obtained by taking the transpose and then the complex conjugate:

$$
A \rightarrow A^{\dagger}=\bar{A}^{T} \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

- Commuting matrices:

$$
[A, B]=A B-B A=0
$$

- Non-commuting matrices:

$$
[A, B]=A B-B A \neq 0
$$

1.2.2 Notations of special relativity

Notations of special relativity

- In special relativity, the components of a four-vector x^{μ} are defined by three spatial coordinates and time.
- Greek letters $\mu, \mathrm{v}, \lambda, \ldots$ will be used to indicate components of a four-vector
- Latin indices $\mathrm{i}, \mathrm{j}, \mathrm{k}, \ldots$ will be used to indicate its spatial components
- Contravariant coordinates:

$$
x^{\mu} \equiv\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \equiv(t, \vec{x})
$$

- Covariant coordinates:

$$
x_{\mu} \equiv\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \equiv(t,-\vec{x})
$$

- Lower/raise the indices via:

$$
x_{\mu}=g_{\mu \nu} x^{\nu}=\sum_{\nu} g_{\mu \nu} x^{\nu} \text { and } x^{\mu}=g^{\mu \nu} x_{\nu}=\sum_{\nu} g^{\mu \nu} x_{\nu}
$$

Notations of special relativity

- The Minkowski metric tensor $\mathrm{g}_{\mu \mathrm{v}}$ is defined via:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \equiv g^{\mu \nu}
$$

- The distance I between two points x and y in space-time can be expressed using the Minkowski metric in terms of:

$$
I^{2}=g_{\mu \nu}\left(x^{\mu}-y^{\mu}\right)\left(x^{\nu}-y^{\nu}\right)
$$

Notations of special relativity

- The scalar product of two vectors A^{μ} and B^{μ} will be written as:

$$
g_{\mu \nu} A^{\mu} B^{\nu}=A_{\nu} B^{\nu}=A^{\nu} B_{\nu}=A_{0} B^{0}-\vec{A} \vec{B}
$$

- Covariant and contravariant derivatives are defined via

$$
\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \quad \text { and } \quad \quad \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}}=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right)
$$

- The wave operator (D'Alembert operator) is defined via:

$$
\square \equiv \frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2}=\partial_{\mu} \partial^{\mu}
$$

Notations of special relativity

- The momentum four-vector of a particle is given by:

$$
p^{\mu}=(E, \vec{p}) \quad \text { and } \quad p_{\mu}=(E,-\vec{p})
$$

where E is the energy of the particle.

- The invariant scalar product of the covariant and contravariant momenta is denoted by:

$$
p^{\mu} p_{\mu}=E^{2}-\vec{p}^{2}=m^{2}
$$

where m is the rest-mass of the particle

Notations of special relativity

- Natural units:

- In discussions on relativistic quantum mechanics (and quantum field theories), it is customary to use a system of units in which there is only one fundamental unit: i.e. the unit of mass
- The units of length and time are defined by declaring: $\quad \hbar=1, \quad c=1$.

Quantity	Dimension	Conversion factor
Mass	$[\mathrm{M}]$	$1 / \mathrm{c}^{2}$
Length	$[\mathrm{M}]^{-1}$	$\hbar \mathrm{c}$
Time	$[\mathrm{M}]^{-1}$	\hbar
Energy	$[\mathrm{M}]$	1
Momentum	$[\mathrm{M}]$	$1 / \mathrm{c}$
Electric charge	$[\mathrm{M}]^{0}$	$\sqrt{ } \hbar \mathrm{c}$

1.2.3 Relativistic wavefunctions

Relativistic wavefunctions

- Duality between matter and radiation is a striking characteristic of non-classical physics
- Particle-like behaviour of light (photons)
- Wave-like behaviour of electrons:

$$
\Psi(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i \vec{k} \vec{r}-i \omega t)
$$

where energy and momentum are defined via:

$$
E=\hbar \omega \quad, \quad \vec{p}=\hbar \vec{k} \quad(\text { with } k=2 \pi / \lambda)
$$

- In quantum theories, quantities are represented by operators which act on the wavefunctions (their eigenvalues are measurable):

$$
E \longrightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \longrightarrow-i \hbar \vec{\nabla}
$$

Relativistic wavefunctions

- The Schrödinger equation is obtained after inserting the energy and momentum operators into the non-relativistic representation of the total energy:

$$
\begin{gathered}
E=\frac{\vec{p}^{2}}{2 m}+V(\vec{r}, t) \\
i \hbar \frac{\partial \Psi(\vec{r}, t)}{\partial t}=\left(-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2}+V(\vec{r}, t)\right) \Psi(\vec{r}, t) \equiv H \Psi(\vec{r}, t)
\end{gathered}
$$

- The wavefunctions gain their meaning in the context of the probability density and probability current density:

$$
\rho=\Psi^{*} \Psi=|\Psi|^{2} \quad \text { and } \quad \vec{j}=\frac{\hbar}{2 i m}\left(\Psi^{*}(\vec{\nabla} \Psi)-\left(\vec{\nabla} \Psi^{*}\right) \Psi\right)
$$

Relativistic wavefunctions

- The probability density and probability current density follow the continuity equation:

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0
$$

\rightarrow probability is conserved.

- For a free particle we obtain:

$$
\rho=\frac{1}{V} \quad, \quad \vec{j}=\rho \vec{v}
$$

i.e. the current density is the product of the probability density and the velocity

Klein-Gordon equation

- The Klein-Gordon equation describes relativistic scalars ($\pi^{ \pm}, K^{0}$, Higgs boson)
- It is obtained after inserting the energy and momentum operators into the relativistic representation of the total energy of a free particle:

$$
\begin{array}{cc}
E^{2}=\vec{p}^{2}+m^{2} & E \longrightarrow i \frac{\partial}{\partial t} \\
\downarrow & \vec{p} \longrightarrow-i \vec{\nabla} \\
-\frac{\partial^{2} \Phi}{\partial t^{2}}=\left(-\vec{\nabla}^{2}+m^{2}\right) \Phi &
\end{array}
$$

from now on:

$$
\hbar=1, \quad c=1
$$

- After sorting the terms we obtain the Klein-Gordon equation for a free particle with mass m:

$$
\left[\frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2}+m^{2}\right] \Phi(\vec{r}, t) \equiv\left(\square+m^{2}\right) \Phi(\vec{r}, t)=0
$$

Klein-Gordon equation

- The same equation is also valid for complex conjugated wavefunctions (i.e. antiparticles):

$$
\left(\square+m^{2}\right) \Phi^{*}(\vec{r}, t)=0
$$

- This equation is the relativistic generalisation of the Schrödinger equation
- Solutions are given by plane waves like:

$$
\Phi(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i(\vec{k} \vec{r} \pm \omega t))
$$

- The energy eigenvalues (obtained after including the wavefunctions into the Klein-Gordon function) are:

$$
E= \pm \omega= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

Klein-Gordon equation

- The same equation is also valid for complex conjugated wavefunctions (i.e. antiparticles):

$$
\left(\square+m^{2}\right) \Phi^{*}(\vec{r}, t)=0
$$

- This equation is the relativistic generalisation of the Schrödinger equation
- Solutions are given by plane waves like:

$$
\Phi(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i(\vec{k} \vec{r} \pm \omega t))
$$

- The energy eigenvalues (obtained after including the wavefunctions into the Klein-Gordon function) are:

$$
E= \pm \omega= \pm \sqrt{\vec{p}^{2}+m^{2}} \begin{aligned}
& \text { Eigenvalues can be either } \\
& \text { positive or negative }
\end{aligned}
$$

Klein-Gordon equation

- Wavefunctions with positive solutions are given via:

$$
\Phi_{+}(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i \vec{k} \vec{r}-i \omega t), \quad i \frac{\partial \Phi_{+}}{\partial t}=+\omega \Phi_{+}
$$

- Wavefunctions with negative solutions are given via:

$$
\Phi_{-}(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i \vec{k} \vec{r}+i \omega t), i \frac{\partial \Phi_{-}}{\partial t}=-\omega \Phi_{-}
$$

- Negative values appeared unphysical at first.
- Wavefunctions with negative energy can not be ignored (as the solutions with E > 0 do not give a complete system of eigenfunctions)
- See example from classical wave equation

Ignoring this term omits waves going to the left as well as standing waves

$$
f(x, t)=a \exp (i k x-i \omega t)+b \exp (i k x+i \omega t)
$$

Klein-Gordon equation

- Wavefunctions with positive solutions are given via:

$$
\Phi_{+}(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i \vec{k} \vec{r}-i \omega t), \quad i \frac{\partial \Phi_{+}}{\partial t}=+\omega \Phi_{+}
$$

- Wavefunctions with negative solutions are given via:

$$
\Phi_{-}(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp (i \vec{k} \vec{r}+i \omega t), \quad i \frac{\partial \Phi_{-}}{\partial t}=-\omega \Phi_{-}
$$

Identified as wavefunction for antiparticles

- Negative values appeared unphysical at first.
- Wavefunctions with negative energy can not be ignored (as the solutions with E > 0 do not give a complete system of eigenfunctions)
- See example from classical wave equation

Ignoring this term omits waves going to the left as well as standing waves

$$
f(x, t)=a \exp (i k x-i \omega t)+b \exp (i k x+i \omega t)
$$

Klein-Gordon equation

- The probability density and probability current density for a scalar particle with positive energy are:

$$
\rho=\frac{1}{V} \frac{\omega}{m}, \quad j=\frac{1}{V} \frac{\vec{k}}{m}
$$

- Solutions with positive energy correspond to a positive probability density, while solutions with negative energy correspond to a negative probability density

Dirac equation

- The Dirac equation describes relativistic fermions (spin- $1 / 2$ particles):
- Developed by Paul Dirac (1928), who was searching for an equation that
a) is of first-order in time to avoid negative energy solutions (as Schrödinger equation)
b) follows the laws of special relativity
- Dirac chose the following ansatz to describe the wavefunctions of a free electron:

$$
\begin{aligned}
i \frac{\partial \Psi}{\partial t} \equiv H \Psi & =(\vec{\alpha} \cdot \vec{p}+\beta m) \Psi \\
& =(-i \vec{\alpha} \vec{\nabla}+\beta m) \Psi \\
& =-i\left(\alpha_{1} \frac{\partial \Psi}{\partial x_{1}}+\alpha_{2} \frac{\partial \Psi}{\partial x_{2}}+\alpha_{3} \frac{\partial \Psi}{\partial x_{3}}\right)+\beta m \Psi
\end{aligned}
$$

- The parameter $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and β have to be chosen such that the relativistic relationship between energy and momentum is satisfied:

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

Dirac equation

- Requirement can be achieved if $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and β are hermitian matrices and follow:

1) $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta=\mathbb{1}, \alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=0$ for $j \neq k$ and $\alpha_{j} \beta+\beta \alpha_{j}=0$.
2) $\quad \operatorname{Tr}\left(\alpha_{j}\right)=\operatorname{Tr}(\beta)=0$

Thus the dimension of the matrices has to be even. However, dimension $N=2$ is not sufficient because there are only three linear independent hermitian matrices with a trace of 0 (i.e. the Pauli matrices):

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Dirac equation

For $\mathrm{N}=4$ there are 16 linear independent hermitian matrices. For our problem the matrices

$$
\begin{array}{ll}
\alpha_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) & \alpha_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right) \\
\alpha_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) & \beta=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{array}
$$

are ideal. The Dirac equation can be formulated in a spacetime symmetric way if one introduces the Gamma matrices:

$$
\gamma^{0}=\beta, \quad \gamma^{1}=\beta \alpha_{1}, \quad \gamma^{2}=\beta \alpha_{2}, \quad \gamma^{3}=\beta \alpha_{3}
$$

Dirac equation

For the sake of simplicity, the Gamma matrices are written as a 4-vector:

$$
\gamma^{\mu}=\left(\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right)
$$

With:

$$
\begin{aligned}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \cdot \mathbb{1} \\
& \left(\gamma^{0}\right)^{\dagger}=\gamma^{0}, \quad\left(\gamma^{j}\right)^{\dagger}=-\gamma^{j}, \quad(\text { for } j=1,2,3)
\end{aligned}
$$

Thus the Dirac equation can be written as:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0
$$

Dirac equation

- The solutions to the Dirac equation are referred to as Dirac Spinors:

$$
\begin{aligned}
& \Psi_{+}(x) \equiv u_{1,2}(p) \exp (-i E t) \exp (+i \vec{p} \cdot \vec{x}) \\
& \Psi_{-}(x) \equiv v_{1,2}(p) \exp (+i E t) \exp (-i \vec{p} \cdot \vec{x})
\end{aligned}
$$

with the components:

$$
\begin{aligned}
& u_{1}(p)=\underbrace{\sqrt{\frac{E+m}{V}} \cdot\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
\frac{p_{x}+i p_{y}}{E+m}
\end{array}\right)}_{\Uparrow} \\
& v_{1}(p)=\underbrace{\sqrt{\frac{E+m}{V}} \cdot\left(\begin{array}{c}
\frac{p_{x}-i p_{y}}{\frac{E}{E+m}} \\
\frac{-p_{z}}{E+m} \\
0 \\
1
\end{array}\right)}_{\Uparrow} \quad u_{2}(p)=\underbrace{\sqrt{\frac{E+m}{V} \cdot\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m}
\end{array}\right)}}_{\Downarrow} \\
& \underbrace{\binom{0}{1}}_{\Downarrow}
\end{aligned}
$$

Spinors of positive energy

Spinors of negative energy

Dirac equation

- The solutions to the Dirac equation are referred to as Dirac Spinors:

$$
\begin{aligned}
& \Psi_{+}(x) \equiv u_{1,2}(p) \exp (-i E t) \exp (+i \vec{p} \cdot \vec{x}) \\
& \Psi_{-}(x) \equiv v_{1,2}(p) \exp (+i E t) \exp (-i \vec{p} \cdot \vec{x})
\end{aligned}
$$

Representation of the direction of the fermion spin
with the components:

Spinors of positive energy

Spinors of negative energy

Dirac equation

- Negative energy solutions:
- Feynman-Stückelberg interpretation:
- Wavefunctions of negative energies describe (for $t \rightarrow-t$) antiparticles moving forward in time.

1. Emission of an antiparticle with 4-momentum p^{μ} is equivalent to absorbing a particle with the 4-momentum $-p^{\mu}$
2. Absorbing an antiparticle with 4 -momentum p^{μ} is equivalent to emission of a particle with the 4 -momentum $-p^{\mu}$

Dirac equation

- Interpretation of spinors:
- $u_{1,2}(p)$ incoming fermion annihilated at interaction point ($\mathrm{E}>0$)
- $\bar{u}_{1,2}(p)$ outgoing fermion created at interaction point ($\mathrm{E}>0$)
- $v_{1,2}(p)$ incoming antifermion created at interaction point $(\mathrm{E}<0)$
- $\bar{v}_{1,2}(p)$ outgoing antifermion annihilated at interaction point ($\mathrm{E}<0$)
- Dirac adjoint spinor is defined as:

$$
\bar{\Psi}=\Psi^{\dagger} \gamma^{0}
$$

and follows the adjoint Dirac equation:

$$
\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right)=0
$$

- The probability density is defined via:

$$
\rho=\Psi^{\dagger} \Psi=\left|\Psi_{1}\right|^{2}+\left|\Psi_{2}\right|^{2}+\left|\Psi_{3}\right|^{2}+\left|\Psi_{4}\right|^{2}
$$

Dirac equation

- Helicity and chirality:

- Helicity is defined as the projection of the spin orientation onto the direction of the momentum:

$$
\lambda=\frac{\vec{s} \cdot \vec{p}}{|\vec{p}|}
$$

- Fermions with $\lambda=+1 / 2$ have parallel spin and momentum
- Fermions with $\lambda=-1 / 2$ have antiparallel spin and momentum
- Chirality ("Handedness")
- Left-handed fermions are described via: $\psi_{L}=P_{L} \psi$
- Right-handed fermions are described via: $\quad \psi_{R}=P_{R} \psi$

For $E \gg m, P_{L}$ is the projection operator for negative helicity and P_{R} is the projection operator for positive helicity

Dirac equation

- Helicity and chirality:
- Chirality:
- The projection operators are defined via:

$$
P_{L}=\frac{\mathbb{1}-\gamma_{5}}{2}=P_{L}^{\dagger}, \quad P_{R}=\frac{\mathbb{1}+\gamma_{5}}{2}=P_{R}^{\dagger}
$$

with:

$$
\begin{aligned}
& \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\gamma_{5}^{\dagger} \\
& \bar{\psi}_{L}=\left(P_{L} \psi\right)^{\dagger} \gamma^{0}=\bar{\psi} P_{R} \\
& \bar{\psi}_{R}=\left(P_{R} \psi\right)^{\dagger} \gamma^{0}=\bar{\psi} P_{L}
\end{aligned}
$$

- The projection operators follow:

$$
\begin{gathered}
P_{L}=P_{L}^{2} \quad P_{R}=P_{R}^{2} \\
P_{L} P_{R}=P_{R} P_{L}=0
\end{gathered}
$$

Maxwell equation

- Using the Maxwell equations (1864) to describe the electromagnetic field:

$$
\begin{align*}
\vec{\nabla} \cdot \vec{E} & =\rho \longleftarrow \text { charge density } \\
\vec{\nabla} \times \vec{B}-\frac{\partial E}{\partial t} & =\vec{j} \longleftarrow \text { current density } \tag{1}
\end{align*}
$$

- The electric field E and magnetic field B are constrained by two further equations:

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \quad \text { and } \quad \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{2}
\end{equation*}
$$

- The components of the E and B fields can be expressed by a 3-vector A and a scalar quantity φ :

$$
\begin{equation*}
\vec{B}=\vec{\nabla} \times \vec{A} \quad \text { and } \quad \vec{E}=-\vec{\nabla} \varphi-\frac{\partial \vec{A}}{\partial t} \tag{3}
\end{equation*}
$$

Maxwell equation

- These four quantities (3 components from the A vector potential and the scalar φ) transform like the components of a four-vector:

$$
A^{\mu} \equiv\left(A^{0}, \vec{A}\right)=(\varphi, \vec{A})
$$

with this definition, the equations (3) can be re-written in a covariant form:

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{4}
\end{equation*}
$$

where the components of the field-strength tensor $F_{\mu v}$ are the components of the electric and magnetic fields:

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & E^{1} & E^{2} & E^{3} \\
-E^{1} & 0 & -B^{3} & B^{2} \\
-E^{2} & B^{3} & 0 & -B^{1} \\
-E^{3} & -B^{2} & B^{1} & 0
\end{array}\right)
$$

$F^{\mu v}$ can be obtained by replacing the E^{i} with $-E^{i}$

Maxwell equation

- Using the field-strength tensor $F_{\mu v}$ and the potential A we can rewrite the homogeneous Maxwell equations from (2) as:

$$
\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}+\partial_{\lambda} F_{\mu \nu}=0
$$

while the inhomogeneous Maxwell equations from (1) can be expressed as:

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=j^{\nu} \tag{5}
\end{equation*}
$$

where j^{v} is a four-vector which incorporates the sources (i.e. the charge density and the current density):

$$
j^{\mu} \equiv\left(j^{0}, \vec{j}\right)=(\rho, \vec{j})
$$

Maxwell equation

- Gauge freedom:
- We have to deal with a certain degree of ambiguity as the ansatz

$$
A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \lambda
$$

(where λ is any function of position and time) would satisfy equation (4).

- A change of potential that has no impact on the the field is referred to as gauge transformation
- Exploit gauge freedom and set an additional constraint on potential:

$$
\partial_{\mu} A^{\mu}=0 \quad \longleftarrow \text { Lorentz condition }
$$

i.e. for:

$$
\partial^{\mu} \partial_{\mu} \lambda=\square \lambda=-\partial^{\mu} A_{\mu}
$$

Maxwell equation

- With this gauge choice we can easily combine (4) and (5) to obtain:

$$
\square A^{\mu}=j^{\mu}
$$

- In empty space (i.e. for $j^{\mu}=0$) the Maxwell equation changes to:

$$
\square A^{\mu}=0
$$

$$
\longleftarrow \begin{aligned}
& \text { Resembles the Klein-Gordon } \\
& \text { equation of a massless particle }
\end{aligned}
$$

where A^{μ} is identified as the wave function of the photon.

Maxwell equation

- The solutions to this equation are plane waves:

$$
\begin{aligned}
& A_{+}^{\mu}(x)=\frac{1}{\sqrt{V}} \varepsilon_{\mu}(k, \lambda) \exp \left(-i k_{\mu} x^{\mu}\right) \\
& A_{-}^{\mu}(x)=\frac{1}{\sqrt{V}} \varepsilon_{\mu}^{*}(k, \lambda) \exp \left(i k_{\mu} x^{\mu}\right)
\end{aligned}
$$

With the wave vector $k^{\mu}=p^{\mu}$ and the polarisation vector ε^{μ} :

$$
\varepsilon_{\mu}(\lambda= \pm 1)=\mp \frac{1}{\sqrt{2}}(0,1, \pm i, 0)
$$

which describes two transverse polarisation states. The longitudinal polarisation state was eliminated by the Lorentz gauge condition:

$$
\partial_{\mu} A^{\mu}=0
$$

Proca equation

- The Proca equation describes (relativistic) massive gauge bosons ($\mathbf{W}^{+}, \mathbf{W}^{-}, \mathbf{Z}$):

$$
\left(\square+M^{2}\right) W^{\nu}=0
$$

- Solutions are plane waves:
- Opposite to photons, the massive gauge bosons have three polarisation states.
- Including a longitudinal polarisation and transverse helicity ($\lambda=0$)

$$
\begin{aligned}
\varepsilon^{\mu}(p, \lambda= \pm 1) & =\mp \frac{1}{\sqrt{2}}(0,1, \pm i, 0) \\
\varepsilon^{\mu}(p, \lambda=0) & =\frac{1}{M}(p, 0,0, E)
\end{aligned}
$$

$$
\begin{aligned}
& \text { for: } \\
& \qquad p^{\mu}=(E, 0,0, p)
\end{aligned}
$$

The polarisation vectors are independent of the momentum for transversely polarised massive gauge bosons, but exhibit a linear dependence of the momentum for longitudinally polarised massive gauge bosons. For high energies:

$$
\varepsilon_{L}^{\mu}=\frac{1}{M} p^{\mu}
$$

1.2.4 Lagrange formalism

Lagrange formalism (reminder)

- All theories of classical physics can be derived via the principle of least action:
- The Lagrangian and action are related by:

$$
\mathcal{A}=\int_{t_{1}}^{t_{2}} d t L\left(q_{r}(t), \dot{q}_{r}(t), t\right)
$$

The Lagrangian L is a function of the coordinates and the velocity, while t_{1} and t_{2} indicate the initial and final time between which we study the system.

- Among all trajectories that join $q\left(t_{1}\right)$ and $q\left(t_{2}\right)$, the system will follow the one for which the action is stationary:

$$
\delta \mathcal{A}=0
$$

i.e. the path for which the variation of the action vanishes.

Lagrange formalism (reminder)

- The Euler-Lagrange equations, i.e the equations of motions, follow from the $\delta \mathcal{A}=0$ requirement:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{r}}\right)=\frac{\partial L}{\partial q_{r}}
$$

- Example:
- For a particle of mass m moving in a time-independent potential $\mathrm{V}(\mathrm{x})$, we can choose the Lagrangian as:

$$
L=\frac{1}{2} m \dot{x}^{2}-V(x)
$$

The Euler-Lagrange equation as derived from the Lagrangian is:

$$
\frac{d}{d t} m \dot{x}=-\nabla V
$$

as expected from Newton's second law.

Lagrange formalism (in field theory)

- In field theory, the action becomes a space-time dependent integral of a Lagrangian:

$$
\mathcal{A} \equiv \int_{t_{1}}^{t_{2}} d t \underbrace{\int d^{3} x \mathcal{L}\left(\phi(x), \partial_{\mu} \phi(x)\right)}_{\text {total Lagrangian } L}
$$

$$
\begin{aligned}
& q_{r}(t) \rightarrow \phi(x) \\
& \dot{q}_{r}(t) \rightarrow \partial_{\mu} \phi(x)
\end{aligned}
$$

With the Lagrange density: $\quad \mathcal{L}\left(\phi(x), \partial_{\mu} \phi(x)\right)$

- Requiring the principle of least action to be fulfilled leads to the Lagrange equation:

$$
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi(x)\right)}-\frac{\partial \mathcal{L}}{\partial \phi(x)}=0
$$

Lagrange formalism (examples of important Lagrange densities)

- Scalar field (Klein-Gordon equation):

$$
\mathcal{L}=\frac{1}{2}\left[\left(\partial_{\mu} \Phi\right)\left(\partial^{\mu} \Phi\right)-m^{2} \Phi^{2}\right]
$$

$$
\left(\square+m^{2}\right) \Phi=0
$$

- Dirac field (Dirac equation):

$$
\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi=0
$$

- Electromagnetic field (Maxwell equation)

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& =-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)
\end{aligned}
$$

$$
\square A^{\mu}=0
$$

Lagrange formalism (examples of important Lagrange densities)

- Massive vector bosons like $\mathbf{W}^{+}, \mathbf{W}^{-}, \mathbf{Z}^{0}$ (Proca equation):

$$
\mathcal{L}=-\frac{1}{4}\left(\partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}\right)\left(\partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}\right)+\frac{1}{2} M^{2} W^{\mu} W_{\mu}
$$

width: $\quad \partial_{\nu} W^{\nu}=0$

$$
\left(\square+M^{2}\right) W^{\nu}=0
$$

- Quantum electrodynamic (QED):

$$
\mathcal{L}_{Q E D}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi-j^{\mu} A_{\mu}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

width: $j^{\mu}=q \bar{\Psi} \gamma^{\mu} \Psi$

1.2.5 Collisions

Relativistic Collisions

- In a relativistic collision, energy and momentum are always conserved (i.e. all four components of the energy-momentum four-vector are conserved):

1. Energy is conserved: $E_{A}+E_{B}=E_{C}+E_{D}$
2. Momentum is conserved: $\vec{p}_{A}+\vec{p}_{B}=\vec{p}_{C}+\vec{p}_{D}$
for:

$$
A+B \rightarrow C+D
$$

3. Kinetic energy may or may not be conserved
4. and 2. can be combined into a single expression: $p_{A}^{\mu}+p_{B}^{\mu}=p_{C}^{\mu}+p_{D}^{\mu}$

- Collisions can be classified as "sticky", "explosive" or "elastic", depending on whether the kinetic energies decreases, increases or remains the same:

1. Sticky: kinetic energy decreases, rest energy and mass increase
2. Explosive: kinetic energy increases, rest energy and mass decrease
3. Elastic: kinetic energy is conserved, rest energy and mass are conserved

Relativistic Collisions

Note:

- Except for elastic collisions the rest mass is not conserved.
- In the decay $\pi^{0} \rightarrow \gamma+\gamma$ the initial mass was 135 MeV , but the final mass is zero. I.e. rest mass of the pion is converted into kinetic energy.
- If the rest mass of the initial particles is conserved, then a collision must have been elastic:
- In elementary particle physics this is only the case if initial and final state particles are identical:
- Electron-proton scattering: $\mathrm{e}^{-}+\mathrm{p} \rightarrow \mathrm{e}^{-}+\mathrm{p}$
- Møller scattering: $\mathrm{e}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{-}+\mathrm{e}^{-}$
- Bhabha scattering: $e^{-}+e^{+} \rightarrow e^{-}+e^{+}$

Relativistic Collisions

- Example 1: A pion (at rest) decays into a muon and neutrino: $\pi^{+} \rightarrow \mu^{+}+v_{\mu}$
- Question: What is the energy of the muon?
- Conservation of energy and momentum require:

$$
\begin{array}{rlrlrl}
p_{\pi}^{\lambda} & =p_{\mu}^{\lambda}+p_{\nu}^{\lambda} & & \text { or } & p_{\nu}^{\lambda} & =p_{\pi}^{\lambda}-p_{\mu}^{\lambda} \\
p_{\pi, \lambda} & =p_{\mu, \lambda}+p_{\nu, \lambda} & \text { or } & p_{\nu, \lambda} & =p_{\pi, \lambda}-p_{\mu, \lambda}
\end{array}
$$

- Here: we use λ as the space-time index.

$$
\underbrace{p_{\nu}^{\lambda} p_{\nu, \lambda}}_{=m_{\nu}^{2}}=\underbrace{p_{\pi}^{\lambda} p_{\pi, \lambda}}_{=m_{\pi}^{2}}-\underbrace{p_{\mu}^{\lambda} p_{\pi, \lambda}}_{=E_{\pi} E_{\mu}-\vec{p}_{\pi} \vec{p}_{\mu}}-\underbrace{p_{\pi}^{\lambda} p_{\mu, \lambda}}_{=E_{\mu} E_{\pi}-\vec{p}_{\mu} \vec{p}_{\pi}}+\underbrace{p_{\mu}^{\lambda} p_{\mu, \lambda}}_{=m_{\mu}^{2}}
$$

$$
\underbrace{m_{\nu}^{2}}_{\approx 0}=m_{\pi}^{2}-\underbrace{E_{\pi}}_{m_{\pi}} E_{\mu}-\underbrace{\vec{p}_{\pi}}_{=0} \vec{p}_{\mu}-E_{\mu} \underbrace{E_{\pi}}_{=m_{\pi}}-\vec{p}_{\mu} \underbrace{\vec{p}_{\pi}}_{=0}+m_{\mu}^{2}
$$

$$
E_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}}
$$

Relativistic Collisions

- Example: Production of antiprotons at the Bevatron via:

$$
p+p \rightarrow p+p+p+\bar{p}
$$

- Question: What is the threshold energy for this reaction?
- Solution:
- Study left side of reaction in Lab frame:

$$
p_{\mathrm{TOT}, \mathrm{LAB}}^{\mu}=(E+m,|\vec{p}|, 0,0)
$$

- Study right side of reaction in CM frame (with all for finale
lab frame:
- Study lef
state particles being at rest):

$$
p_{\mathrm{TOT}, \mathrm{CM}}^{\mu}=(4 m, 0,0,0)
$$

$$
p_{\mu, \mathrm{TOT}, \mathrm{LAB}} p_{\mathrm{TOT}, \mathrm{LAB}}^{\mu}=p_{\mu, \mathrm{TOT}, \mathrm{CM}} p_{\mathrm{TOT}, \mathrm{CM}}^{\mu}
$$

- Thus: $(E+m)^{2}-\vec{p}^{2}=(4 m)^{2}$ and finally:

$$
E=7 \mathrm{~m}
$$

i.e. roughly 6 GeV

CM frame:

Before

Before

In CM-frame:

$$
\sum_{i}^{N} \vec{p}_{i}=0
$$

