
Testing the Standard Model of Elementary Particle Physics I

Third lecture

Dr. Dominik Duda

19th November 2020

1.3 Feynman Calculus

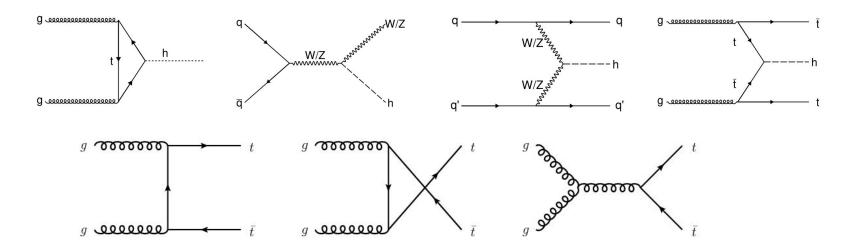


Table of content

- Introduction
- Feynman-diagrams
 - Feynman rules
- Cross sections
- Decay rates

• Feynman-diagrams:

 Schematic representation of the mathematical expressions describing the behavior and interactions of elementary particles.

 Will introduce methodology of calculating production cross section for any process based on a fixed set of rules, Feynman rules.

• Cross sections:

- The term "cross section" derives from a thought experiment involving the scattering process of hard spheres:
 - Imagine a hard sphere of radius a, located somewhere within a total area of A
 - A second sphere is thrown towards the first sphere
 - The target sphere shows an area of πa^2
 - The probability that the incoming sphere would scatter from the target sphere is given by:

$$P_S = \overbrace{A}^{\pi a^2}$$
 Cross sectional area of the sphere or: $\sigma = P_S$

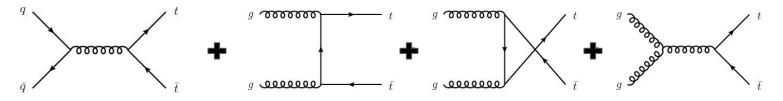
- Imagine we have a parallel beam with the density ρ and the velocity v towards the target.
 - In time t, this beam will fill a volume pvtA, where A is now the area normal to the beam which fully contains it.
 - Choosing t such that only one particle is contained in this volume, we can write:

$$1 = \rho v t A$$

• Thus the cross section definition can be rewritten as:

$$\sigma = \frac{P_S/t}{\rho v}$$

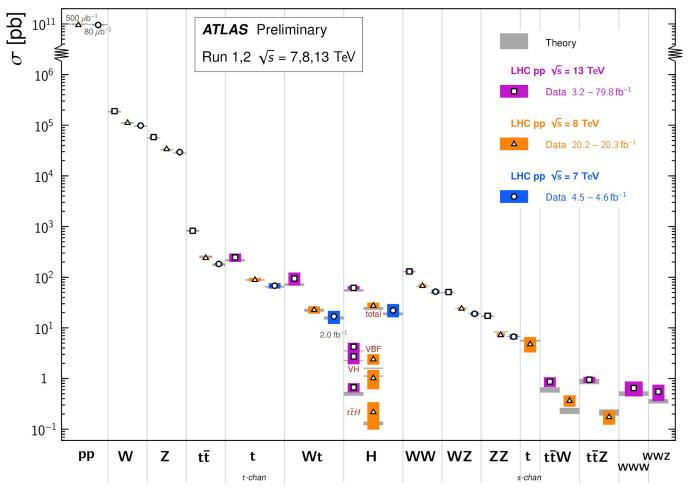
where P_s/t is the transition rate, i.e. the probability of scattering per unit time and ρv is the flux of particles.

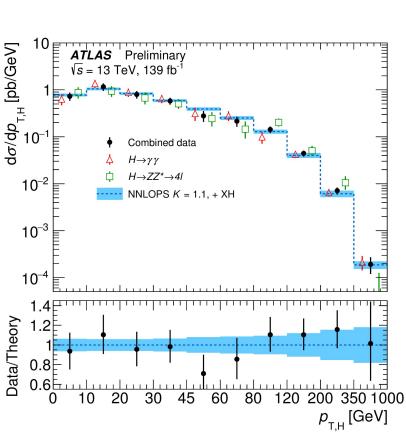

A cross sections can be understood as a transition rate per unit of particle flux

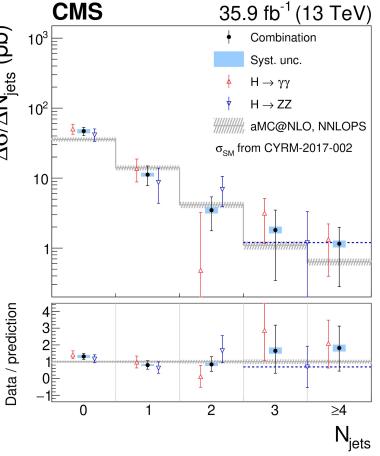
Have to migrate these expressions to quantum mechanical scattering processes

- Cross sections:
 - Calculation of inclusive cross section:

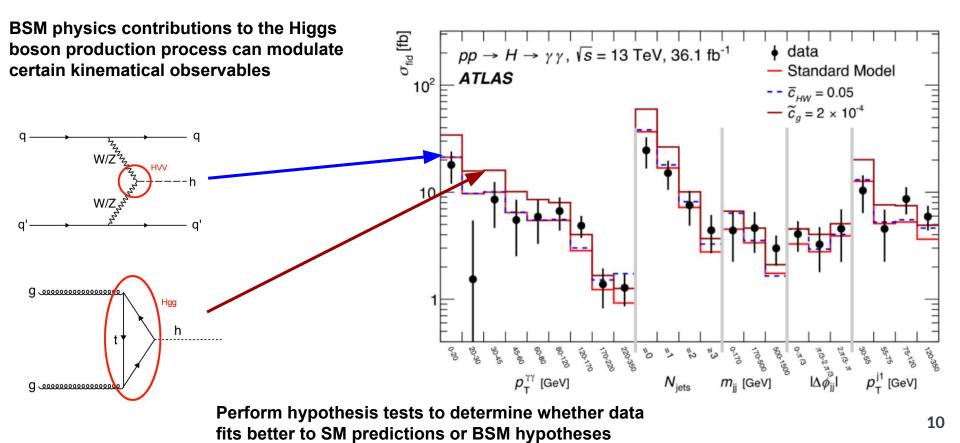
$$\sigma_{\rm tot} = \sum_i^N \sigma_i$$


Contributions from various production modes.


Tree level diagrams and ideally higher order diagrams:


Standard Model Total Production Cross Section Measurements Status: May 2020

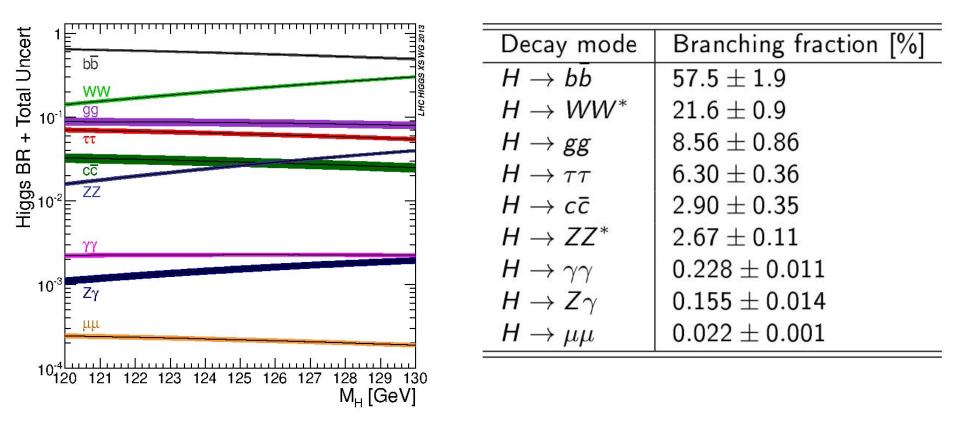
8



Differential cross sections:

Differential cross sections as a gate to new physics

- Decay rates and branching fraction:
 - \circ The decay rate is defined as the probability per unit time that a decay $X \to x_1^{} x_2^{}$ will occur
 - Decay rate and mean lifetime of a particle are related via:


 $au = rac{1}{\Gamma}$

For particles with multiple decay modes, the total decay rate is the sum of the individual decay rates:

• The branching ratio of a decay $X \rightarrow x_1 x_2$ is defined via:

$$BR(X o x_1 x_2) = rac{\Gamma_i}{\Gamma_{ ext{tot}}}$$

Higgs boson decays

Higgs boson decays

sononew/Z

• Strength of the coupling between the Higgs boson and other particles is proportional to the particle mass:

$$\mathcal{L}_{Hff} = -\frac{m_f}{v} h f \bar{f} \quad \text{and} \quad \mathcal{L}_{HVV} = \frac{1}{v} \left(2m_W^2 W_\mu^+ W^{-\mu} + 2m_Z^2 Z_\mu Z^\mu \right) h$$

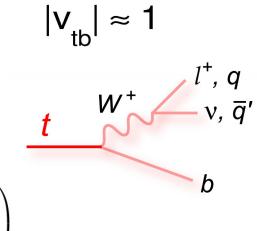
- Thus decays to massless particles such as photon or gluons is only possible via top quark (or W boson) loops
- The masses of the particles running in these loops are large and thus such decay modes can compete with decays to fermions or W and Z bosons

W/Z boson decays

• Lepton universality:

- \circ All three types of charged leptons interact in the same way with other particles.
- The three lepton types are created equally often in particle transformations, or decays (once differences in their mass are accounted for)

Decay Mode	BR	Decay Mode	BR
$Z \rightarrow e^+ e^-$	$(3.3632 \pm 0.0042)\%$	W ightarrow e u	$(10.71 \pm 0.16)\%$
$Z ightarrow \mu^+ \mu^-$	$(3.3662 \pm 0.0066)\%$	$W ightarrow \mu u$	$(10.63 \pm 0.15)\%$
$Z \to \tau^+ \tau^-$ $Z \to \text{invisible}$	$(3.3696 \pm 0.0083)\%$ $(20.000 \pm 0.055)\%$	$W \to \tau \nu$	$(11.38 \pm 0.21)\%$
$Z \rightarrow hadrons$	$(69.911 \pm 0.056)\%$	$W \to \mathrm{hadrons}$	$(67.41 \pm 0.27)\%$


Quark decays

• CKM matrix elements describe transition from one quark flavour to another:

- I.e. V_{ij} measures the coupling of quark i to quark j:
- The CKM matrix is given via:

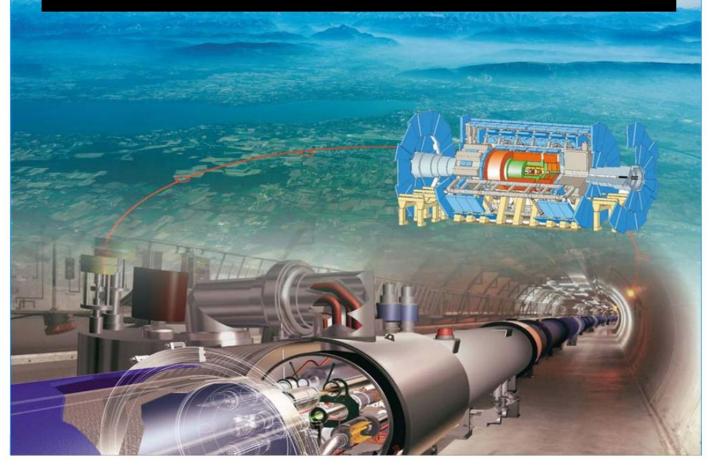
$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{tc} & V_{tb} \end{pmatrix}$$

• Top quark decays almost exclusively via $t \rightarrow bW$

• The magnitudes of the matrix elements are:

 $\begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$

Latest measurements of CKM matrix elements taken from: <u>https://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf</u>


Lepton decays

Decay Mode	BR
$\tau^- \rightarrow e^- v_e v_\tau$	$(17.83 \pm 0.04)\%$
$\tau^- \to \mu^- \nu_\mu \nu_\tau$	$(17.41 \pm 0.04)\%$
$\tau^- \to \pi^- \pi^0 v_{\tau}$	$(25.52 \pm 0.09)\%$
$\tau^- \to \pi^- \nu_{\tau}$	$(10.83 \pm 0.06)\%$
$\tau^- \to \pi^- \pi^0 \pi^0 \nu_{\tau}$	$(9.30 \pm 0.11)\%$
$\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$	$(8.99 \pm 0.05)\%$
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$(2.74 \pm 0.07)\%$
$\tau^- \to \pi^- \pi^0 \pi^0 \pi^0 \nu_\tau$	$(1.04 \pm 0.07)\%$

Decay Mode	BR
$\mu^- ightarrow e^- ar{ u}_e u_\mu$	100%

- Electrons are stable
- Lifetimes:
 - Muons: 2.2 · 10⁻⁶ s
 - Taus: 290.6 · 10⁻¹⁵ s
- Neutrino oscillate:
 - Will be discussed next semester

