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 1.4 Field Theories of Elementary Particle Physics
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1.4.1 Symmetries and groups



Symmetries in physics

● Symmetries in nature imply conservation laws. 
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● Basic principle of QFT: Lagrange functions ℒ are formulated to be invariant, 
under global and local phase transformations



Noether’s theorem

● Consider a continuous transform of the field 𝜑, which in infinitesimal form 
can be written as:

● If ℒ(𝜑,𝜕μ𝜑) is invariant under such transform

● Then there is a current jμ(x) conserved

● Conservation law can also be expressed via:
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Gauge symmetries:

● Global gauge invariance:
○ The expectation value of a quantum mechanical observable 

Is invariant with respect to the global phase transformation of the wave function:

○ The invariance of a Lagrangian with respect to a phase transformation corresponds to a global 
U(1) symmetry (referred to as gauge symmetry) 

■ Leads according to the Noether theorem to a conservation of probability and charge 
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Gauge symmetries:

● Global gauge invariance:
○ The Lagrangian                                  for a complex scalar is invariant under U(1) gauge 

transformations:

where α does not depend on the space-time (as it is a “global parameter”)
○ The Lagrangian is also invariant under infinitesimal variations of these fields δΦ:

○ Such that:

follows. 8



Gauge symmetries:

● Global gauge invariance:
○ Exploiting the Euler-Lagrange equation gives: 

○ According to the Noether’s theorem, we can calculate a current:

where Q is the conserved charge (since the current fulfills the continuity equation) 
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i.e.:



Gauge symmetries:

● Local gauge invariance:
○ Now we want to ensure that quantum mechanical observables are also invariant under 

local phase transformations of the wave function: 

○ Space-time dependent phase transformations (local gauge transformations) imply:

○ Thus need to introduce a covariant derivative like:

in order to ensure that the Lagrangian becomes invariant under local phase 
transformations. 

 

10

Example: QED

(17)



Gauge symmetries:

● Local gauge invariance:
○ In equation (17), we find the electric charge of the fermion field q = eQ, and the vector 

potential Aμ(x) of the electromagnetic field (which is the gauge field of the U(1)). The 
latter field transforms under phase rotation like:

○ Thus ψ∗Dμψ is invariant under local phase transformations since: 
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Gauge symmetries:

● Local gauge invariance:
○ The local gauge invariance under U(1) transformations is obtained by introducing an 

interaction between the fermion field and the electromagnetic field. 

○ The global U(1) symmetry of the field equations leads to a conserved charged (which is 
the source of the electromagnetic field)

○ An interaction (coupling between matter and gauge fields) is unambiguously determined 
due to the requirement of local phase invariance (local gauge principle) i.e. via the 
covariant derivative:     
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Gauge symmetries:

● Local gauge invariance:
○ Example: (electromagnetic interaction between the a fermion and the photon field)

■ The Lagrangian of the free Dirac field: 

is adjusted to follow local gauge invariance 

and introducing the coupling to the electromagnetic current:  
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Gauge symmetries:

● Local gauge invariance:
○ Example: (electromagnetic interaction between the a fermion and the photon field)

■ Lagrangian of the quantum electrodynamics:  
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Group theories:
● Gauge symmetries are described via so-called Lie groups:

○ i.e. groups of transformations g(α) that are analytical functions of a set of continuous  
parameters αa (with a = 1, .., n) 

○ The infinitesimal transformation can be written as:

where Ta (a = 1, ... , n) are the generators of the group. 
○ All elements of the group can be written in the form:

○ These transformations are unitary if the generators are hermitian 

○ Unitarity is a condition for symmetry transformations of quantum mechanical states in 
order to guarantee the conservation of probability

● Lie groups are relevant for the inner symmetries of the SM particles as well as for 
the gauge symmetry 15



Group theories:

● Gauge symmetries are described via so-called Lie groups:
○ The hermitian generators are quantum mechanical observables and conserved quantities

○ A set of linear independent generators of a Lie group follow the commutation rules:

with the structure constants fabc and the relation: 

○ The generators and the commutation operation define the Lie Algebra of a group.

○ The structure constants are specific to a Lie Algebra, but they depend also on the choice 
of independent generators and thus also on the parameters of the group
 

○ The number of independent parameters/generators gives the order N of a group

○ The maximum number of commuting generators of a Lie group is called its rank R
16



Group theories:

● The following Lie groups are relevant for the Standard Model:
○ U(1): 

■ abelian (i.e. group is commutative)
■ for unitary 1-dimensional phase transformations 
■ Rank 1

○ SU(N) (N ≥ 2):
■ non-abelian  
■ for special unitary transformations of N-dimensional complex vectors following:

● U†U= 1
● Det(U) = 1

■ The generators of these groups T=T† are  hermitian n×n matrices with Tr(T) = 0
● N2−1 independent matrices/generators exists

■ Rank N−1
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Group theories:

● Other Lie groups:
○ SO(N): (special orthogonal groups)

■ OTO= 1
■ Det(O) = 1
■ N(N−1)/2 generators exist
■ Rank R = N/2

○ Exceptional Lie groups:
■ G2(N = 14,  R= 2)
■ F4(N = 52,   R= 4)
■ E6(N = 78,   R= 6)
■ E7(N = 133, R= 7)
■ E8(N = 248, R= 8)
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Used in e.g. string 
theories 



Discrete symmetries

● Symmetries of a free particle (here: fermion) for the electromagnetic and strong 
interactions but not for the weak interaction:
○ Parity P inverts the direction of the (space) axis:

○ Time inversion T: 

○ Charge conjugation: particle → antiparticle, 
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Discrete symmetries

● CP symmetry: 
○ Is experimentally known to be violated by at least  the weak interaction 

● CPT symmetrie:
○ Is conserved for all local and lorentz invariant field theories with                  

and a spin–statistics theorem (and thus for all interactions)
■ Some BSM theories actually predict CPT violation (e.g. in string theory)

○ Formulated in the 1950s by Schwinger, Pauli, Lüders
○ Implies that particle/antiparticle have the same mass
○ Experimental effort ongoing to test CPT invariance

20



CPT Invariance

● The simplest tests of CPT invariance probe the equality of the masses and 
lifetimes of a particle and its antiparticle:
● The best test currently comes from the limit on the mass difference between

● Any such difference contributes to the CP violating parameter ε. 

● Assuming CPT invariance, Φε, the phase of ε should be very close to 44°

● In contrast, if the entire source of CP violation in K0 decays were a                   mass 
difference, Φε would be 44°+ 90°.

● Assuming that there is no other sources of CPT violation, it is possible to constrain the 
mass difference. The current best constrain at a 90%CL is:
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From particle data group (pdg): https://pdg.lbl.gov/2017/reviews/rpp2017-rev-conservation-laws.pdf 
For more information see: CP violation in K decays: results from NA31, prospects in NA48 - INSPIRE

https://inspirehep.net/literature/372279
https://pdg.lbl.gov/2017/reviews/rpp2017-rev-conservation-laws.pdf
https://inspirehep.net/literature/372279


 1.4.2 Fundamental Forces and their Unification 
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Fundamental interactions

● Based on the symmetry principle, local gauge theories (Yang-Mills theory) provide 
a general description of all known interactions between the fundamental particles 
(Quarks and Leptons).

● The properties of these interactions are determined by gauge symmetry groups. 
Fermions (Spin 1/2 particles) build up the multi-pletts used in the formulation of 
these gauge symmetries.

● The generators of the gauge symmetry groups (Lie-groups) are the generalized 
charge operators of an interaction. The interactions are mediated via the exchange 
of vector-bosons (Spin 1 particles).

● The electromagnetic (EM), the weak and the strong interaction can be described 
via (special) unitary symmetry groups.
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                      Fundamental interactions
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Fundamental interactions
● The number of independent parameters as well as the number of generators (generalized 

charges) of a group SU(N) is N2 − 1 (order of a group). Here, N is the number of degrees of 
freedom of particle states (i.e. the dimension)

● The gauge symmetry group of the Standard Model of particle physics is the product of the 
individual Lie-groups:

● The free fermion states (f = e, μ, τ, νe, νμ, ντ, u, d, s, c, b, t) of the Standard Model are thus 
given via:

○ Particles:

 
○ Anti-particles:
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Quantum Electrodynamics (QED) 
● Gauge theory based on the U(1) symmetry group (electric charge)
● Gauge field (photon field): Potential Aμ
● Gauge boson (photon): Spin-1, massless (due to gauge symmetry requirement)
● Lagrangian density describing the coupling between a photon and fermion:

with the covariant derivative:

and the field-strength tensor:

(18)
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Quantum Electrodynamics (QED) 
● Gauge field couples to current:

● Here the conserved (electromagnetic) current is defined by:

● The couplings strength is determined via the elementary charge e, while Qf is the 
eigenvalue of the charge operator (generator of the U(1) gauge symmetry group).

● Local U(1) gauge transformations defined by:

keep the Lagrangian from equation (18) invariant
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Quantum Electrodynamics (QED) 
● Global U(1) gauge symmetry → Conservation of electric charge (Noether’s 

theorem)
● Continuity equation:

● Gauge symmetry requires mγ = 0
○ Experimental limits:

■ Measurement of Jupiter’s magnetic field by Pioneer 10-probe: mγ < 4.5 · 10−16 eV
■ Measurement of galactic magnetic field: mγ < 3.5 · 10−27 eV

● Gauge interactions must have infinite range !
○ In contradiction with what has been said before (more on this later !!!)



29

Quantum Electrodynamics (QED) 
● Additional symmetries of the QED:

○ Continuous symmetries:
■ Lorentz invariants
■ Invariants under space-time shifts
■ Rotation

→ Conservation of energy, momentum and angular momentum (Noether’s theorem)

○ Discrete symmetries:
■ Lepton- and quark-flavour conservation
■ Parity P transformation:
■ Time T transformation: t → −t
■ Charge conjugation C : Qf → −Qf 
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Weak interaction
● Description is analogous to QED with coupling of weak currents to an electric 

charged gauge boson:
● Short ranged interaction changing lepton and quark flavours.

○ Nuclear β-decay:

○ Muon decay:
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Weak interaction
● Weak interactions are described using dubletts of a fundamental SU(2) group 

(analogous to Spin and Isospin).

● Left-handed particles are sorted into SU(2)-Dubletts:
electric charge

hyper charge

3rd component 
of weak Isospin
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Weak interaction
● Right-handed particles are sorted into SU(2)-Singuletts:

● Relationship between electric charge and hypercharge described by 
Gell-Mann-Nishijijima formula:

● The weak interaction induces flavour-changing transitions within the 
fermion-dubletts Lℓ (for leptons) and Lq (for quarks).
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Weak interaction
● Only left-handed fermions      and right-handed anti-fermions       participate in the 

weak interaction.

● Due to the V−A structure of the weak currents, the weak interaction is maximal 
parity violating.

● Proof for parity violation in the weak interaction:
○ K+ → π+ π0 and K+ → π+ π− π+ (Lee & Yang in 1956)
○ Polarisation of electrons from nuclear β decay (Wu in 1957)

● Projection of the chiral fermion states:

with the chirality: 
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Weak interaction
● Thus the weak fermion currents are defined via:

● Thus we speak about vector (γμ) - axial vector (γμ γ5) or V − A current
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Weak interaction
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Weak interaction
● Use local weak Isospin gauge symmetry SU(2)L to describe the weak interaction:

○ SU(2)L-Dubletts (L):
○ SU(2)L-Dubletts (R):

○ 3 Generator (charges)

■ Isospin vector:

■ Lie-algebra: [Ii, Ij] = iεijk Ik (i.e. weak interaction is non-abelian)

■ Creation and annihilation operators: 

■ Fermion-dubletts with: 

■           with Pauli’s spin matrices σi (with i = 1, 2, 3)

Creation and Annihilation 
operator:
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Electroweak unification
● Common approach using local SU(2)L and U(1)Y gauge symmetry 

(Gashow 1961, Salam 1968, Weinberg 1967) → (GSW theory)
■ Electromagnetic interaction has to be considered as well due to the electric charge of 

the weak gauge bosons W±

● Y is weak hypercharge: [Ii,Y] = 0 with i = 1, 2, 3

● Therefore Yf is the same for both components of a SU(2)L-doublet wherase

● The electric charge within a multiplet is derived from Qf = I3 + Y/2

● A unified gauge theory of a combined weak and electromagnetic interaction is 
described via:
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Electroweak unification
where Lf is a left-handed SU(2)-doublets and ψf is a SU(2)-singulett, while the
covariant derivatives are defined via:

Here, the coupling constants g and g’ are the weak Isospin and the weak
hypercharge, respectively.
⇒ minimal gauge invariant coupling to 4 massless gauge bosons from a
U(1)Y and SU(2)L:
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Electroweak unification
● The field-strength tensors of the SU(2)L × U(1)Y are defined via:

i.e. the formulation of the Lagrangian for free gauge fields is done analogous to 
that of the QED.

● All fermion masses need to be = 0, due to global SU(2)L invariance 
○ Different masses in the fermion doublets violate the SU(2) symmetry 

● A mass term for dirac particles

is not invariant

⇒ masses of electroweak gauge bosons (except for γ) and fermions are generated by a spontaneous 
symmetry breaking of the local SU(2)L × U(1)Y gauge symmetry (i.e. Higgs-mechanism).
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Electroweak unification
● Local SU(2) gauge transformations U(x) are defined via:

● The interaction term of the electroweak Lagrangian can also be written as:

with the definition of the flavour-changing charged currents and the charged 
gauge bosons 

   and
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Electroweak unification
● Neutral currents of neutrinos can only be mediated by weak interaction.

● Discovered in 1973 at CERN via νμ p → νμ p.

● Z and γ boson result from spontaneous symmetry breaking (rotated by angle θW 
wrt original W0 and B0 vector boson plane):

with:
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Electroweak unification
● The photon field is defined via:

while the Z -field is defined via:

● Both, the Z0 as well as the W± bosons were discovered in 1983 at CERN in 
collisions.

● Neutral weak currents (coupling of neutral fermion currents to the Z0 gauge boson) 
was already predicted by the GSW theory and finally observed in 1973 in neutrino 
scattering experiments at CERN (using bubble chambers).
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Electroweak unification
● Inverting the transformations gives:

● Including this into the Lagrangian gives:

⇒ Neutrinos do not couple to the electromagnetic field Aμ 
○ Only left-handed neutrinos couple to Zμ, while right-handed neutrinos do not interact 

since their weak charge Y(νR) = 0.

       

and



44

Electroweak unification
● For the electromagnetic interaction we define:

and thus:
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Electroweak unification
● With these expressions, the Lagrangian for interactions with neutral currents 

changes to:

● In a more general representation:

● The weak neutral coupling of all left- and right-handed fermion states to the Z 
boson is described via: 
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Quantum chromodynamics (QCD)
● SU(3) gauge theory of the strong interaction between quarks and 8 charges 

(generators) λa (a = 1, ..., 8):

with the structure constants of the SU(3)-Lie algebra fabc.
● Local gauge transformations are given via:

while the Lagrangian is defined as:

with the covariant derivative (with Dμψ = U(Dμψ)):

Gauge fields of the QCD 
(with a = 1, …., 8)
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Quantum chromodynamics (QCD)
● The field strength tensor is given via:

● Within the fundamental SU(3) representation, the quark-fields are sorted into 
tripletts using the quantum number: Colour ("red","green","blue"):

● Introduction of creation and annihilation operators within the SU(3)C 
colour-tripletts:

whereas antiquarks 
carry anticolour
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Quantum chromodynamics (QCD)
● Here, the three dimensional Gell-Mann matrices are used (which are defined 

analogously to the Pauli matrices of the SU(2)):
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Quantum chromodynamics (QCD)
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Quantum chromodynamics (QCD)
● Interaction part of the QCD-Lagrangian:

conserved colour current
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Quantum chromodynamics (QCD)
with the eight gluon fields:
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Quantum chromodynamics (QCD)
● Obtain eight colour charge operators from the                                    of the SU(3)

● Exchange of a gluon changes die Colour quantum numbers not the flavour 
quantum numbers of quarks.

● Gluons do not exists as colour-singlets in the SU(3) (in contrast to U(3)).
○ Such states would couple to colourless states, Mesons (qq̄) and Baryons (qqq), and 

would induce strong and far ranged nuclear forces similar to the electromagnetic force

● Coloured particles (quarks and gluons) are bound to colour-singlet states 
(Mesonen and Baryons) and do not appear as free states (confinement)
○ Example:
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Quantum chromodynamics (QCD)
● Motivation of colour quantum numbers:

○ The new inner degrees of freedom of the SU(3)C colour symmetry allow the construction 
of a antisymmetric wave function for the ∆++ = (u ↑ u ↑ u ↑) baryon (JP = 3/2  and L = 0):

■ Forbidden without colour charge due to Pauli’s principle
○ Hadronic cross section in e+e− annihilation:

■ Is thus NC = 3 (number of colour charges) times higher than the leptonic cross 
section.
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Quantum chromodynamics (QCD)
● Motivation of colour quantum numbers:

○ Decay of the π0 into two photons:

○ Renormalizability of the electroweak interactions:
■ Divergent terms (appearing at higher orders perturbation) 

for interactions between two vector currents and one axial 
vector current are canceled if  

Holds true (i.e. if quark and lepton contribution cancel each 
other).  



       1.4.3 Origin of Particle Masses
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Origin of particle masses
● While the electromagnetic interaction has an infinite range, the weak interaction is 

short ranged 
○ i.e. the weak interaction must be mediated by massive gauge bosons

● Explicite mass terms of gauge bosons (described by Proca equation) violate the 
local gauge symmetry of the Lagrangian 

● Explicite mass terms of fermions (described by Dirac equation) violate the global 
SU(2)L gauge symmetry 

● However, gauge symmetry is necessary to cancel divergences in every order of 
perturbation theory i.e. renormalizability of the electroweak theory (similar to QED) 

● Solution: Introduce spontaneous symmetry breaking (SSB) of the vacuum 
expectation value of the field theory  
○ However, the gauge symmetry of the full Lagrangian is conserved 
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Origin of particle masses
● Higgs mechanism: 

○ Constructed analogously to 2nd order phase transitions in solid matter state physics: 
SSB below a critical temperature TC 

■ In particle physics: 
● Full symmetry of vacuum recovered at high energies/temperatures 

○ I.e. phase transition, SSB,  happened during the cooling of the expanding 
early universe

● Goldstone's theorem: 
○ The spontaneous breaking of a continuous symmetry leads to the existence of a 

massless scalar (“Nambu-Goldstone boson”)
■ Examples: 

● The longitudinal polarisation components of the W- and Z- bosons correspond to the 
Goldstone bosons of the spontaneously broken part of the electroweak symmetry SU(2)
⊗U(1)
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Higgs mechanism
● Goldstone bosons are excitations of the field  (in the direction of the broken 

symmetry)
○ Example: 

■ Quasiparticles in solid state physics (such as phonons)

● In case of a spontaneously broken local gauge symmetry, the goldstone bosons 
are “eaten-up” by the gauge fields (unitary transformation)
○ This process provides the longitudinal polarisation states to the gauge bosons 

and a mass term

● Higgs mechanism is introduced analogously to the Meißner-Ochsenfeld effect:
○  Local U(1) phase symmetry is spontaneously broken in the ground state:

■ Photon field obtains an effective mass as it is dampened due to interactions with 
Cooper pairs

○ Independently proposed by  research teams around:
■ Peter Higgs
■ François Englert & Robert Brout

https://de.wikipedia.org/wiki/Fran%C3%A7ois_Englert
https://de.wikipedia.org/wiki/Robert_Brout
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Higgs mechanism
● Introduce an additional complex scalar field within a SU(2)L- doublet:

which fulfills the Klein-Gordon equation and is described by a SU(2) × U(1) gauge 
invariant Lagrangian of the form:  

with the covariant derivative 

and the potential (λ > 0): 
Self coupling parameter
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Higgs mechanism
● For μ2 < 0, the ground state (kinetic energy T = 0 and V = Vmin)  is at a non-zero 

value of the scalar field 

where the vacuum expectation value of the Higgs field is:

● The ground state 

spontaneously breaks the SU(2)L × U(1)Y symmetry. 



62

Higgs mechanism
● The weak isospin doublet of the Higgs field can also be written as:

●  A fluctuation around the minimum v is written as:

● The scalar field h(x) describes a physical Higgs boson, while ζ is an unphysical 
massless state (Goldstone boson)

● Rewriting the original Lagrangian in terms of the quantum fields h and ζ yields:

where the h field obtained a mass  

(19)
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Higgs potential

● The Higgs potential has the shape of a “mexican hat”
● Higgs boson is a radial excitation of the field
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Gauge boson masses
● The gauge bosons obtain their masses via coupling to the Higgs field:

○  Inserting the vev component from equation (19) into the covariant derivative:

leads to a term 

which results in:

(20)
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Gauge boson masses
● Studying equation (20), we can identify:

○ The W boson mass term: 

○ The Z boson mass term:

○ Aμ remains massless
● Before the interaction with the Higgs field:

○ 8 degrees of freedom (2 polarisation states for each W, B)
○ 4 degrees of freedom from the Higgs field 

● After the interaction with the Higgs field: 
○ 9 degrees of freedom (3 polarisation states for each W+, W-, Z)
○ 2 degrees of freedom (2 polarisation states for Aμ)
○ 1 degrees of freedom for the Higgs boson h

With: 

and the general expressions for 
the mass terms of a charged 
spin-1 and a real spin-1 field, 
respectively: 

and
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Yukawa coupling
● The Dirac equation is only invariant under SU(2) transformations of the left-handed 

fermion doublets, if the two constituents of a given doublet have the same mass 
(i.e. me = mν)
○ To keep gauge invariance, Higgs-Mechanism is also used to generate 

fermions masses

● The Yukawa interaction describes the coupling between the Higgs field and the 
fermion fields: 

where the strength of the Higgs-fermion coupling gf is proportional to the mass of 
the fermion:
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Higgs boson discovery
● Discovery of a new particle compatible with the SM Higgs boson was published by 

the ATLAS and CMS collaborations in the Summer of 2012
○ Considering the following decay modes:

■ h → γγ (ATLAS & CMS)
■ h → ZZ* → ℓℓℓℓ (ATLAS & CMS)
■ h → WW* → ℓvℓv (ATLAS)
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Higgs boson discovery
● Discovery of a new particle compatible with the SM Higgs boson was published by 

the ATLAS and CMS collaborations in the Summer of 2012
○ Considering the following decay modes:

■ h → γγ (ATLAS & CMS)
■ h → ZZ* → ℓℓℓℓ (ATLAS & CMS)
■ h → WW* → ℓvℓv (ATLAS)

Other channels such as h → ττ 
were not sensitive enough back 
then 
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Higgs boson discovery
● The discovery of the Higgs boson concluded a search 

lasting several decades
○ Previous inconclusive searches at LEP and TeVatron

● Resulted in Nobel prizes for: François Englert and Peter W. 
Higgs (for the prediction of the Higgs boson)

https://www.nobelprize.org/prizes/physics/2013/englert/facts/
https://www.nobelprize.org/prizes/physics/2013/higgs/facts/
https://www.nobelprize.org/prizes/physics/2013/higgs/facts/


       1.4.4  Quark-flavour mixing
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Quark-flavour mixing
● Mass eigenstates and flavour eigenstates of down-type quarks are different to the weak 

interaction
○ The mixing between the down-type quarks is described by an unitary matrix i.e. the so-called 

Cabibbo-Kobayashi-Maskawa (CKM)-matrix:

● The matrix elements weight the transition probability for decays (via a weak charged 
current) of an up-type quark into a down-type quark (or vise versa)   

● The masses and mixings of quarks have a common origin in the Standard Model  as 
they arise from the Yukawa interactions with the Higgs field

● Elements of the CKM matrix are not predicted by the SM, but have to be determined 
experimentally

with:
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Quark-flavour mixing

Latest measurements of CKM matrix elements taken from: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf
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Quark-flavour mixing
● The CKM matrix can be parameterized by three mixing angles and the CP-violating 

complex phase. Of the many possible conventions, a standard choice has become:

where sij = sin θij, cij = cos θij, and δ is the phase responsible for all CP-violating 
phenomena in flavor-changing processes in the SM. The angles θij can be chosen 
to lie in the first quadrant, so sij, cij ≥ 0. 
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Quark-flavour mixing
● An alternative representation of the CKM matrix is the Wolfenstein 

parameterisation:

● The Wolfenstein parameters can be translated via:
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Quark-flavour mixing
● The unitarity of the CKM matrix imposes:

● The six vanishing combinations can be represented 
as triangles (i.e. by the unitarity triangles) in a 
complex plane

● The most commonly used unitarity triangle arises 
from

by dividing each side by the best-known one, 

● Phases of CKM elements:
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Quark-flavour mixing

● Some last remarks:
○ The main consequences of the quark-flavour mixing in weak charged interactions are:

1) Quark-flavour oscillations 
2) Violation of the CP symmetry 

→ Will come back to studies on quark-flavour oscillation and CP violation during 
the lectures next semester

○ Flavour changing neutral currents (i.e. FCNC) do not appear in tree level processes 
within the SM


