Testing the Standard Model of Elementary Particle Physics I

Sixth lecture

Dr. Dominik Duda

17th December 2020

1.4 Field Theories of Elementary Particle Physics

Table of content

• Field Theories of Elementary Particle Physics

- Symmetries and groups
 - Noether's theorem
 - Gauge symmetries
 - Group theories
 - Discrete symmetries
- Fundamental Forces and their Unification
 - Electromagnetic Interaction
 - Weak Interaction
 - Strong interaction
 - Electroweak unification
- Origin of Particle Masses (i.e. the Higgs mechanism)
- Quark-flavour mixing (i.e. the CKM matrix)

Symmetries in physics

• Symmetries in nature imply conservation laws.

Space translation	\longleftrightarrow	Momentum
Time translation	\longleftrightarrow	Energy
Rotation	\longleftrightarrow	Angular momentum
U(1) gauge invariance	\longleftrightarrow	Charge conservation

 Basic principle of QFT: Lagrange functions *L* are formulated to be invariant, under global and local phase transformations

Noether's theorem

• Consider a continuous transform of the field φ , which in infinitesimal form can be written as:

$$\phi(\mathbf{x}) \rightarrow \phi'(\mathbf{x}) = \phi(\mathbf{x}) + \alpha \Delta \phi(\mathbf{x})$$

• If $\mathcal{L}(\varphi, \partial_{\mu}\varphi)$ is invariant under such transform

 $\delta \mathcal{L} = 0$

• Then there is a current $j_{\mu}(x)$ conserved

$$j^{\mu}(x)rac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\Delta\Phi \quad o \quad \partial_{\mu}j^{\mu}(x)=0$$

• Conservation law can also be expressed via:

- Global gauge invariance:
 - The expectation value of a quantum mechanical observable

$$<\mathcal{O}>=\int\psi^*\mathcal{O}\psi$$

Is invariant with respect to the global phase transformation of the wave function:

$$\psi(x) \longrightarrow \psi'(x) = e^{iQ\alpha}\psi(x)$$

- The invariance of a Lagrangian with respect to a phase transformation corresponds to a global U(1) symmetry (referred to as gauge symmetry)
 - Leads according to the Noether theorem to a conservation of probability and charge

• Global gauge invariance:

• The Lagrangian $\mathcal{L}(\phi, \phi^*, \partial_\mu \phi, \partial_\mu \phi^*)$ for a complex scalar is invariant under U(1) gauge transformations:

$$egin{aligned} \phi(x) & \longrightarrow & \phi'(x) = e^{iQlpha}\phi(x), \ \phi^*(x) & \longrightarrow & \phi^{*\prime}(x) = e^{-iQlpha}\phi^*(x). \end{aligned}$$

where α does not depend on the space-time (as it is a "global parameter")

• The Lagrangian is also invariant under infinitesimal variations of these fields $\delta \Phi$:

$$\phi(x) \longrightarrow \phi'(x) = \phi(x) + \delta\phi(x) = \phi(x) + iQ(\delta\alpha)\phi(x),$$

$$\phi^*(x) \longrightarrow \phi^{*'}(x) = \phi^*(x) + \delta\phi^*(x) = \phi^*(x) - iQ(\delta\alpha)\phi^*(x)$$

• Such that:

$$\delta(\partial_{\mu}\phi) = iQ(\delta\alpha)\partial_{\mu}\phi$$

follows.

• Global gauge invariance:

• Exploiting the Euler-Lagrange equation gives:

$$\begin{split} \delta \mathcal{L} &= \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi) + \frac{\partial \mathcal{L}}{\partial \phi^{*}} \delta \phi^{*} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{*})} \delta (\partial_{\mu} \phi^{*}) \\ &= \left[\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right] i Q(\delta \alpha) \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} i Q(\delta \alpha) \partial_{\mu} \phi + c.c. \\ &= i Q(\delta \alpha) \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \phi \right] - i Q(\delta \alpha) \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{*})} \phi^{*} \right] \equiv 0 \end{split}$$

• According to the Noether's theorem, we can calculate a current:

$$j^{\mu} \equiv -iQ\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\phi - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi^{*})}\phi^{*}\right)$$

where Q is the conserved charge (since the current fulfills the continuity equation)

$$.e.: \frac{d}{dt}Q = 0$$

9

• Local gauge invariance:

 Now we want to ensure that quantum mechanical observables are also invariant under local phase transformations of the wave function:

$$\psi(x) \longrightarrow \psi'(x) = e^{iQ\alpha(x)}\psi(x)$$

• Space-time dependent phase transformations (local gauge transformations) imply:

$$\partial_{\mu}\psi(x) \longrightarrow \partial_{\mu}\psi'(x) = e^{iQ\alpha(x)}[\partial_{\mu}\psi(x) + iQ(\partial_{\mu}\alpha(x))\psi(x)]$$

• Thus need to introduce a covariant derivative like:

$$\partial_{\mu} \longrightarrow D_{\mu} \equiv \partial_{\mu} + ieQA_{\mu}(x)$$
 Example: QED (17)

in order to ensure that the Lagrangian becomes invariant under local phase transformations.

• Local gauge invariance:

• In equation (17), we find the electric charge of the fermion field q = eQ, and the vector potential $A_{\mu}(x)$ of the electromagnetic field (which is the gauge field of the U(1)). The latter field transforms under phase rotation like:

$$egin{aligned} \mathcal{A}_{\mu}(x) \longrightarrow \mathcal{A}_{\mu}'(x) &= \mathcal{A}_{\mu}(x) - rac{1}{e} \partial_{\mu} lpha(x) \end{aligned}$$

• Thus $\psi^* D_{\mu} \psi$ is invariant under local phase transformations since:

$$D_{\mu}\psi(x) = (\partial_{\mu} + ieQA_{\mu})\psi$$

$$\longrightarrow D'_{\mu}\psi'(x) = (\partial_{\mu} + ieQA'_{\mu}(x))e^{iQ\alpha(x)}\psi(x)$$

$$= e^{iQ\alpha(x)}[\partial_{\mu} + iQ\partial_{\mu}\alpha(x) + ieQA_{\mu}(x) - iQ\partial_{\mu}\alpha(x)]\psi(x)$$

$$= e^{iQ\alpha(x)}[\partial_{\mu} + ieQA_{\mu}(x)]\psi(x) \equiv e^{iQ\alpha(x)}D_{\mu}\psi(x) \qquad 11$$

• Local gauge invariance:

- The local gauge invariance under U(1) transformations is obtained by introducing an interaction between the fermion field and the electromagnetic field.
- The global U(1) symmetry of the field equations leads to a conserved charged (which is the source of the electromagnetic field)
- An interaction (coupling between matter and gauge fields) is unambiguously determined due to the requirement of local phase invariance (local gauge principle) i.e. via the covariant derivative:

$$D_{\mu}\psi(x) = \partial_{\mu}\psi(x) + ieQA_{\mu}(x)\psi(x)$$

- Local gauge invariance:
 - Example: (electromagnetic interaction between the a fermion and the photon field)
 - The Lagrangian of the free Dirac field:

$$\mathcal{L}_{\mathrm f{\it ree}} = \overline{\psi} ({\it i} \gamma^\mu \partial_\mu - {\it m}) \psi$$

is adjusted to follow local gauge invariance

$$egin{array}{rcl} \mathcal{L} &=& \overline{\psi}(i\gamma^\mu D_\mu -m)\psi \ &=& \overline{\psi}(i\gamma^\mu \partial_\mu -m)\psi - e Q A_\mu \, \overline{\psi}\gamma^\mu \psi \ &=& \mathcal{L}_{\mathrm{free}} - j^\mu A_\mu \end{array}$$

and introducing the coupling to the electromagnetic current:

$$m{j}^{\mu}=m{e}m{Q}\overline{\psi}\gamma^{\mu}\psi$$

- Local gauge invariance:
 - Example: (electromagnetic interaction between the a fermion and the photon field)
 - Lagrangian of the quantum electrodynamics:

$$\begin{aligned} \mathcal{L}_{QED} &= \mathcal{L}_{free}^{Photon} + \mathcal{L}_{free}^{Fermion} + \mathcal{L}_{Interaction} \\ &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\psi} (i\gamma^{\mu}\partial_{\mu} - m)\psi - j^{\mu}A_{\mu} \\ &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\psi} i\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi - j^{\mu}A_{\mu} \\ &= \mathcal{L}_{kin}^{Photon} + \mathcal{L}_{kin}^{Fermion} + \mathcal{L}_{Mass}^{Fermion} + \mathcal{L}_{Interaction} \end{aligned}$$

Gauge symmetries are described via so-called Lie groups:

- i.e. groups of transformations $g(\alpha)$ that are analytical functions of a set of continuous Ο parameters α_a (with a = 1, ..., n)
- The infinitesimal transformation can be written as: Ο

$$\delta g(\alpha_1, \alpha_2, ..., \alpha_n) = 1 + i \alpha^a T^a$$

where T^{a} (a = 1, ..., n) are the generators of the group.

All elements of the group can be written in the form: Ο

$$g(\alpha) = \exp(i\alpha^a T^a)$$

- These transformations are unitary if the generators are hermitian Ο
- Unitarity is a condition for symmetry transformations of quantum mechanical states in Ο order to guarantee the conservation of probability
- Lie groups are relevant for the inner symmetries of the SM particles as well as for the gauge symmetry

- Gauge symmetries are described via so-called Lie groups:
 - The hermitian generators are quantum mechanical observables and conserved quantities
 - A set of linear independent generators of a Lie group follow the commutation rules:

$$[T^a, T^b] = T^a T^b - T^b T^a = i f^{abc} T^c$$

with the **structure constants** f^{abc} and the relation:

 $[T^a, T^b] = -[T^b, T^a]$

- The generators and the commutation operation define the Lie Algebra of a group.
- The structure constants are specific to a Lie Algebra, but they depend also on the choice of independent generators and thus also on the parameters of the group
- The number of independent parameters/generators gives the order N of a group
- The maximum number of commuting generators of a Lie group is called its rank R

• The following Lie groups are relevant for the Standard Model:

• **U(1):**

- abelian (i.e. group is commutative)
- for unitary 1-dimensional phase transformations
- Rank 1

○ SU(N) (N ≥ 2):

- non-abelian
- for special unitary transformations of N-dimensional complex vectors following:
 - U[†]U= 1
 - Det(U) = 1
- The generators of these groups $T=T^{\dagger}$ are hermitian n×n matrices with Tr(T) = 0
 - N²-1 independent matrices/generators exists
- Rank N-1

- Other Lie groups:
 - SO(N): (special orthogonal groups)
 - O^TO= 1
 - Det(O) = 1
 - N(N-1)/2 generators exist
 - Rank R = N/2
 - Exceptional Lie groups:
 - G₂(N = 14, R= 2)
 - $F_4(N = 52, R = 4)$
 - $E_6(N = 78, R = 6)$
 - $E_7(N = 133, R = 7)$

■ E₈(N = 248, R= 8)

Used in e.g. string theories

Discrete symmetries

- Symmetries of a free particle (here: fermion) for the electromagnetic and strong interactions but not for the weak interaction:
 - Parity P inverts the direction of the (space) axis: $\vec{x} \rightarrow -\vec{x}$, $\vec{p} \rightarrow -\vec{p}$

$$\psi(t,\vec{x}) \longrightarrow \psi^{P}(t,-\vec{x}) = \eta_{P}\gamma^{0}\psi(t,\vec{x})$$

 \circ Time inversion T: $t \longrightarrow -t$

$$\psi(t,\vec{x}) \longrightarrow \psi^{T}(-t,\vec{x}) = i\gamma^{1}\gamma^{3}\psi^{*}(t,\vec{x})$$

• Charge conjugation: particle \rightarrow antiparticle, $Q_f \longrightarrow -Q_f$

$$\psi(t,\vec{x}) \longrightarrow \psi^{C}(t,\vec{x}) = i\eta_{C}\gamma^{2}\psi^{*}(t,\vec{x})$$

Discrete symmetries

- CP symmetry:
 - Is experimentally known to be violated by at least the weak interaction
- CPT symmetrie:
 - Is conserved for all local and lorentz invariant field theories with $\mathcal{L}^{\dagger} = \mathcal{L}$ and a spin–statistics theorem (and thus for all interactions)
 - Some BSM theories actually predict CPT violation (e.g. in string theory)
 - Formulated in the 1950s by Schwinger, Pauli, Lüders
 - Implies that particle/antiparticle have the same mass
 - Experimental effort ongoing to test CPT invariance

CPT Invariance

- The simplest tests of CPT invariance probe the equality of the masses and lifetimes of a particle and its antiparticle:
 - The best test currently comes from the limit on the mass difference between K^0 and \bar{K}^0
 - Any such difference contributes to the CP violating parameter ε.
 - Assuming CPT invariance, Φ_{ϵ} , the phase of ϵ should be very close to 44°
 - In contrast, if the entire source of CP violation in K⁰ decays were a $K^0 \bar{K}^0$ mass difference, Φ_{f} would be 44°+ 90°.
 - Assuming that there is no other sources of CPT violation, it is possible to constrain the mass difference. The current best constrain at a 90%CL is:

$$\left|rac{(m_{ar{K}^0}-m_{K^0})}{m_{K^0}}
ight| \le 0.6\cdot 10^{-18}$$

From particle data group (pdg): <u>https://pdg.lbl.gov/2017/reviews/rpp2017-rev-conservation-laws.pdf</u> For more information see: <u>CP violation in K decays: results from NA31, prospects in NA48 - INSPIRE</u>

1.4.2 Fundamental Forces and their Unification

Fundamental interactions

- Based on the symmetry principle, local gauge theories (Yang-Mills theory) provide a general description of all known interactions between the fundamental particles (Quarks and Leptons).
- The properties of these interactions are determined by gauge symmetry groups. Fermions (Spin 1/2 particles) build up the multi-pletts used in the formulation of these gauge symmetries.
- The generators of the gauge symmetry groups (Lie-groups) are the generalized charge operators of an interaction. The interactions are mediated via the exchange of vector-bosons (Spin 1 particles).
- The electromagnetic (EM), the weak and the strong interaction can be described via (special) unitary symmetry groups.

Fundamental interactions

Interaction	EM	Weak	Strong
Gauge symmetry	U(1)	<i>SU</i> (2)	<i>SU</i> (3)
Theory	QED	GSW	QCD
Gauge boson	Photon	W^\pm , Z^0	8 Gluons
Acts on	electric charge	flavour	colour charge
Range	∞	$10^{-18}\mathrm{m}$	$10^{-15}\mathrm{m}$

Gravitation is not described by SM

Fundamental interactions

- The number of independent parameters as well as the number of generators (generalized charges) of a group SU(N) is N² 1 (order of a group). Here, N is the number of degrees of freedom of particle states (i.e. the dimension)
- The gauge symmetry group of the Standard Model of particle physics is the product of the individual Lie-groups:

 $U(1)\otimes SU(2)\otimes SU(3)$

- The free fermion states (f = e, μ, τ, ν_e, ν_μ, ν_τ, u, d, s, c, b, t) of the Standard Model are thus given via:
 - Particles:

Ο

Anti-particles:

$$\psi_{f}^{+}(x, E > 0) = u(p)e^{-ip_{\mu}x^{\mu}} \times e^{iQ_{f}\alpha} \times \begin{pmatrix} u \\ d \end{pmatrix}_{L} \times \begin{pmatrix} r \\ g \\ b \end{pmatrix}_{q}$$
$$\psi_{f}^{-}(x, E < 0) = v(p)e^{ip_{\mu}x^{\mu}} \times e^{-iQ_{f}\alpha} \times \begin{pmatrix} u \\ d \end{pmatrix}_{R} \times \begin{pmatrix} \bar{r} \\ \bar{g} \\ \bar{b} \end{pmatrix}_{q}$$

/ \

- Gauge theory based on the U(1) symmetry group (electric charge)
- Gauge field (photon field): Potential A
- Gauge boson (photon): Spin-1, massless (due to gauge symmetry requirement)
- Lagrangian density describing the coupling between a photon and fermion:

$$\mathcal{L}_{QED} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}_f (i\gamma^\mu D_\mu - m_f) \psi_f$$
(18)

with the covariant derivative:

$${\sf D}_\mu = \partial_\mu + {\it ieQA}_\mu$$

and the field-strength tensor:

$$F_{\mu
u} = \partial_{
u}A_{\mu} - \partial_{\mu}A_{
u}$$
 26

• Gauge field couples to current:

 $\mathcal{L}_{ ext{Interaction}} = -j^{\mu} \mathcal{A}_{\mu}$

• Here the conserved (electromagnetic) current is defined by:

$$j^{\mu}=eQ_{f}ar{\psi}\gamma^{\mu}\psi$$

- The couplings strength is determined via the elementary charge e, while Q_f is the eigenvalue of the charge operator (generator of the U(1) gauge symmetry group).
- Local U(1) gauge transformations defined by:

$$\psi_f(x) \rightarrow \psi'_f(x) = e^{-ieQ_f a(x)} \psi_f(x)$$

$$A_\mu(x) o A_\mu^{'}(x) = A_\mu(x) + \partial_\mu a(x)$$

keep the Lagrangian from equation (18) invariant

 $\psi_f \quad Q_f \ e \longrightarrow t$

- Global U(1) gauge symmetry → Conservation of electric charge (Noether's theorem)
- Continuity equation:

$$\partial_{\mu} j^{\mu} = \frac{\partial \rho}{\partial t} + \vec{\nabla} \vec{j} = 0$$
$$\rightarrow \frac{dQ}{dt} = \int d^{3}x \frac{\partial \rho}{\partial t} = -\int d^{3}x \vec{\nabla} \vec{j} = -\oint d\vec{\sigma} \vec{j} = 0$$

- Gauge symmetry requires $m_v = 0$
 - Experimental limits:
 - Measurement of Jupiter's magnetic field by Pioneer 10-probe: $m_v < 4.5 \cdot 10^{-16} \text{ eV}$
 - Measurement of galactic magnetic field: $m_v < 3.5 \cdot 10^{-27} \text{ eV}$
- Gauge interactions must have infinite range !
 - In contradiction with what has been said before (more on this later !!!)

- Additional symmetries of the QED:
 - Continuous symmetries:
 - Lorentz invariants
 - Invariants under space-time shifts
 - Rotation

 \rightarrow Conservation of energy, momentum and angular momentum (Noether's theorem)

• Discrete symmetries:

- Lepton- and quark-flavour conservation
- Parity P transformation: $\vec{x} \rightarrow -\vec{x}$ and $\vec{p} \rightarrow -\vec{p}$
- Time T transformation: $t \rightarrow -t$
- Charge conjugation $C : Q_f \rightarrow \neg Q_f$

- Description is analogous to QED with coupling of weak currents to an electric charged gauge boson: $j^{\mu-}W^+_{\mu} + j^{\mu+}W^-_{\mu}$
- Short ranged interaction changing lepton and quark flavours.
 - Nuclear β -decay:

 $n
ightarrow pe^- ar{
u}_e$

• Muon decay:

$$\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$$

• Weak interactions are described using dubletts of a fundamental SU(2) group (analogous to Spin and Isospin).

• Right-handed particles are sorted into SU(2)-Singuletts:

 Relationship between electric charge and hypercharge described by Gell-Mann-Nishijijima formula:

$$Q_f = I_f^3 + Y_f/2$$

• The weak interaction induces flavour-changing transitions within the fermion-dubletts L_{ℓ} (for leptons) and L_{q} (for quarks).

- Only left-handed fermions ψ_L and right-handed anti-fermions $\overline{\psi}_R$ participate in the weak interaction.
- Due to the V-A structure of the weak currents, the weak interaction is maximal parity violating.
- Proof for parity violation in the weak interaction:
 - $K^+ \rightarrow \pi^+ \pi^0$ and $K^+ \rightarrow \pi^+ \pi^- \pi^+$ (Lee & Yang in 1956)
 - \circ Polarisation of electrons from nuclear β decay (Wu in 1957)
- Projection of the chiral fermion states:

$$\psi_L = P_L \psi = \left(\frac{1-\gamma_5}{2}\right)\psi$$

 $\psi_R = P_R \psi = \left(\frac{1+\gamma_5}{2}\right)\psi$

with the chirality:
$$\gamma_5 = \gamma_5^{\dagger}$$

 $\gamma_5 \psi_L = -\psi_L$
 $\gamma_5 \psi_R = -\psi_R$

• Thus the weak fermion currents are defined via:

$$\begin{aligned} j_{\text{weak}}^{\mu} &= \ \overline{\psi}_{L}^{\prime} \gamma^{\mu} \psi_{L} \\ &= \ (P_{L} \psi^{\prime})^{\dagger} \gamma^{0} \gamma^{\mu} P_{L} \psi = \psi^{\prime \dagger} P_{L} \gamma^{0} \gamma^{\mu} P_{L} \psi \\ &= \ \overline{\psi}^{\prime} \gamma^{\mu} P_{L} \psi = \frac{1}{2} \overline{\psi}^{\prime} \gamma^{\mu} (1 - \gamma_{5}) \psi \end{aligned}$$

• Thus we speak about vector (γ^{μ}) - axial vector $(\gamma^{\mu}\gamma_5)$ or V - A current

- Use local weak Isospin gauge symmetry $SU(2)_1$ to describe the weak interaction:
 - SU(2)_L-Dubletts (L): $L_f \rightarrow e^{i\vec{l}\vec{\beta}(x)}L_f$
 - \circ SU(2)_L-Dubletts (R): $\psi_{
 m R}
 ightarrow \psi_{
 m R}$
 - 3 Generator (charges)
 - Isospin vector: $\vec{l} = \begin{pmatrix} l_1 \\ l_2 \\ l_2 \end{pmatrix}$
 - Lie-algebra: $[I_i, I_j] = i\epsilon_{ijk} I_k$ (i.e. weak interaction is non-abelian)
 - Creation and annihilation operators: $I^{\pm} = \frac{1}{2} (I_1 \pm iI_2)$
 - Fermion-dubletts with: $|\vec{I}| = \frac{1}{2}$, $I_z = \pm \frac{1}{2}$
 - $\vec{l} = \frac{\vec{\sigma}}{2}$ with Pauli's spin matrices σ_i (with i = 1, 2, 3)

Creation and Annihilation operator:

$$\sigma^{\pm} = \frac{1}{2} \left(\sigma_1 \pm \sigma_2 \right)$$
- Common approach using local SU(2)_L and U(1)_Y gauge symmetry (Gashow 1961, Salam 1968, Weinberg 1967) \rightarrow (GSW theory)
 - Electromagnetic interaction has to be considered as well due to the electric charge of the weak gauge bosons W[±]
- Y is weak hypercharge: $[I_i, Y] = 0$ with i = 1, 2, 3
- Therefore Y_f is the same for both components of a SU(2), -doublet wherase $Q_f \neq Y_f$
- The electric charge within a multiplet is derived from $Q_f = I_3 + Y/2$
- A unified gauge theory of a combined weak and electromagnetic interaction is described via:

$$\mathcal{L}_{SU(2)\times U(1)} = -\frac{1}{4} f_{\mu\nu} f^{\mu\nu} - \frac{1}{4} F^{i}_{\mu\nu} F^{i\mu\nu} + \sum_{f} (\overline{\psi}_{fR} i \gamma^{\mu} D_{\mu R}) \psi_{fR} + \sum_{L} (\overline{L}_{f} i \gamma^{\mu} D_{\mu L}) L_{f}$$

where L_f is a left-handed SU(2)-doublets and ψ_f is a SU(2)-singulett, while the covariant derivatives are defined via:

$$D_{\mu L} = \partial_{\mu} \cdot \mathbb{1} + ig' \frac{Y_{fL}}{2} B_{\mu}(x) \cdot \mathbb{1} + ig\vec{I} \cdot \vec{W}_{\mu}(x)$$
$$= \partial_{\mu} \cdot \mathbb{1} + i\frac{g'}{2} Y_{fL} B_{\mu}(x) \cdot \mathbb{1} + i\frac{g}{2} \vec{\sigma} \cdot \vec{W}_{\mu}(x)$$
$$D_{\mu R} = \partial_{\mu} + ig' \frac{Y_{fR}}{2} B_{\mu}(x)$$

Here, the coupling constants g and g' are the weak Isospin and the weak hypercharge, respectively.

⇒ minimal gauge invariant coupling to 4 massless gauge bosons from a $U(1)_{Y}$ and $SU(2)_{L}$:

$$B_{\mu}(x) ext{ and } extsf{W}_{\mu}(x) = \left(egin{array}{c} W_{\mu}^{y}(x) \ W_{\mu}^{y}(x) \ W_{\mu}^{z}(x) \end{array}
ight)$$

• The field-strength tensors of the $SU(2)_1 \times U(1)_{\gamma}$ are defined via:

$$f_{\mu\nu} = \partial_{\nu}B_{\mu}(x) - \partial_{\mu}B_{\nu}(x)$$

$$F^{i}_{\mu\nu} = \partial_{\nu}W^{i}_{\mu}(x) - \partial_{\mu}W^{i}_{\nu}(x) + g\varepsilon^{ijk}W^{j}_{\mu}(x)W^{k}_{\nu}(x)$$

i.e. the formulation of the Lagrangian for free gauge fields is done analogous to that of the QED.

- All fermion masses need to be = 0, due to global $SU(2)_{L}$ invariance
 - Different masses in the fermion doublets violate the SU(2) symmetry
- A mass term for dirac particles

$$m\overline{\psi}\psi = m\overline{\psi}(P_L^2 + P_R^2)\psi = m(\overline{\psi}_L\psi_R + \overline{\psi}_R\psi_L)$$

is not invariant

⇒ masses of electroweak gauge bosons (except for γ) and fermions are generated by a spontaneous symmetry breaking of the local SU(2)_L × U(1)_Y gauge symmetry (i.e. Higgs-mechanism).

 $\bar{\psi} P_L = \bar{\psi}_R$ $\bar{\psi} P_R = \bar{\psi}_L$

• Local SU(2) gauge transformations U(x) are defined via:

$$L \longrightarrow L' = U(x) \cdot L = e^{ig rac{ec{\sigma}}{2}ec{eta}(x)} L$$

$$\frac{e, \nu_e}{W^0} = \frac{e, \nu_e}{W^0} = \frac{V_e}{CC}$$

• The interaction term of the electroweak Lagrangian can also be written as:

$$\mathcal{L}_{\text{Interaction}} = -g' \underbrace{\sum_{f} \left(\overline{\psi}_{f} \gamma^{\mu} \frac{Y_{f}}{2} \psi_{f} \right)}_{j_{Y}^{\mu}} B_{\mu} - g \underbrace{\sum_{L} \left(\overline{L}_{f} \gamma^{\mu} \frac{\vec{\sigma}}{2} \cdot L_{f} \right)}_{\vec{j}_{I}^{\mu}} \vec{W}_{\mu}$$

$$= -g' j_{Y}^{\mu} B_{\mu} - g j_{I}^{\mu 0} W_{\mu}^{0} - \frac{g}{\sqrt{2}} \left(j_{I}^{\mu -} W_{\mu}^{+} + j_{I}^{\mu +} W_{\mu}^{-} \right)$$

$$= \mathcal{L}_{\text{NC}} + \mathcal{L}_{CC}$$

with the definition of the flavour-changing charged currents and the charged gauge bosons

$$j_{I}^{\mu\pm} = \sum_{L} \overline{L}_{f} \gamma^{\mu} \tau^{\pm} L_{f} = j_{I}^{\mu1} \pm i j_{i}^{\mu2} \quad \text{and} \quad W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} \pm i W_{\mu}^{2})$$

- Neutral currents of neutrinos can only be mediated by weak interaction.
 - Discovered in 1973 at CERN via $v_{\mu} p \rightarrow v_{\mu} p$.
- Z and γ boson result from spontaneous symmetry breaking (rotated by angle θ_w wrt original W⁰ and B⁰ vector boson plane):

$$\left(\begin{array}{c}B_{\mu}\\W_{\mu}^{0}\end{array}\right)\longrightarrow\left(\begin{array}{c}A_{\mu}\\Z_{\mu}^{0}\end{array}\right)=\left(\begin{array}{c}\cos\theta_{W}&\sin\theta_{W}\\-\sin\theta_{W}&\cos\theta_{W}\end{array}\right)\left(\begin{array}{c}B_{\mu}\\W_{\mu}^{0}\end{array}\right)$$

with:

$$\cos \theta_W = rac{g}{\sqrt{g^2 + g'^2 Y_L^2}}; \qquad \sin \theta_W = rac{g' Y_L}{\sqrt{g^2 + g'^2 Y_L^2}}$$

• The photon field is defined via:

$$A_{\mu} = rac{g B_{\mu} - g' Y_L W^0_{\mu}}{\sqrt{g^2 + g'^2 Y_L^2}} \, ,$$

while the Z -field is defined via:

$$Z^0_\mu = rac{g W^0_\mu + g' Y_L B_\mu}{\sqrt{g^2 + g'^2 Y_L^2}}$$

- Both, the Z⁰ as well as the W[±] bosons were discovered in 1983 at CERN in pp
 collisions.
- Neutral weak currents (coupling of neutral fermion currents to the Z⁰ gauge boson) was already predicted by the GSW theory and finally observed in 1973 in neutrino scattering experiments at CERN (using bubble chambers).

• Inverting the transformations gives:

$$B_\mu = rac{g A_\mu + g' Y_L Z_\mu^0}{\sqrt{g^2 + g'^2 Y_L^2}}$$
 and

$$W^0_\mu = rac{g Z^0_\mu - g' Y_L A_\mu}{\sqrt{g^2 + g'^2 Y_L^2}}$$

• Including this into the Lagrangian gives:

$$\mathcal{L}_{NC} = -\frac{\sqrt{g^2 + g'^2 Y_L^2}}{2} Z_{\mu}^0(\overline{\nu}_{eL}\gamma^{\mu}\nu_{eL}) -\frac{gg'Y_L}{\sqrt{g^2 + g'^2 Y_L^2}} A_{\mu}(\overline{e}_L\gamma^{\mu}e_L) - \frac{gg'Y_R}{2\sqrt{g^2 + g'^2 Y_L^2}} A_{\mu}(\overline{e}_R\gamma^{\mu}e_R) -\frac{g'^2Y_L^2 - g^2}{2\sqrt{g^2 + g'^2 Y_L^2}} Z_{\mu}^0(\overline{e}_L\gamma^{\mu}e_L) - \frac{g'^2Y_LY_R}{2\sqrt{g^2 + g'^2 Y_L^2}} Z_{\mu}^0(\overline{e}_R\gamma^{\mu}e_R)$$

 \Rightarrow Neutrinos do not couple to the electromagnetic field A_{μ}

• Only left-handed neutrinos couple to Z_{μ} , while right-handed neutrinos do not interact since their weak charge $Y(v_R) = 0$.

For the electromagnetic interaction we define: •

$$Y_L = e rac{\sqrt{g^2 + g'^2 Y_L^2}}{gg'} = -1 \quad ext{and} \quad Y_R = 2Y_L$$

and thus:

$$\sqrt{g^2 + g'^2} = \frac{e}{\cos \theta_W \sin \theta_W} \qquad e = \frac{-gg'}{\sqrt{g^2 + g'^2}} = g' \cos \theta_W = g \sin \theta_W$$
$$\frac{g'^2 - g^2}{2\sqrt{g^2 + g'^2}} = \frac{e}{\cos \theta_W \sin \theta_W} \left(-\frac{1}{2} + \sin^2 \theta_W\right)$$
$$-\frac{g'^2}{\sqrt{g^2 + g'^2}} = \frac{e}{\cos \theta_W \sin \theta_W} \left(-\sin^2 \theta_W\right)$$

• With these expressions, the Lagrangian for interactions with neutral currents changes to:

$$\mathcal{L}_{NC} = - \frac{e}{\cos\theta_{W}\sin\theta_{W}} \left[\left(-\frac{1}{2} + \sin^{2}\theta_{W} \right) (\overline{e}_{L}\gamma^{\mu}e_{L}) + (-\sin^{2}\theta_{W})(\overline{e}_{R}\gamma^{\mu}e_{R}) \right] \\ - \frac{g}{2\cos\theta_{W}} (\overline{\nu}_{eL}\gamma^{\mu}\nu_{eL})Z_{\mu}^{0} - e\sum_{f} (Q_{f}\overline{\psi}_{f}\gamma^{\mu}\psi_{f})A_{\mu}$$

• In a more general representation:

$$\mathcal{L}_{NC} = - \frac{e}{\cos \theta_{W} \sin \theta_{W}} \cdot \sum_{f_{R}, f_{L}} \left[(I_{fL,R}^{3} - Q_{fL,R} \sin^{2} \theta_{W}) (\overline{\psi}_{fL,R} \gamma^{\mu} \psi_{fL,R}) \right] Z_{\mu}^{0}$$
$$- e \sum_{f} (Q_{f} \overline{\psi}_{f} \gamma^{\mu} \psi_{f}) A_{\mu}$$

• The weak neutral coupling of all left- and right-handed fermion states to the Z boson is described via:

$$\frac{e}{\cos\theta_W \sin\theta_W} (I_f^3 - Q_f \sin^2\theta_W)$$

45

• SU(3) gauge theory of the strong interaction between quarks and 8 charges (generators) λ^a (a = 1, ..., 8):

$$[\lambda^a, \lambda^b] = 2if^{abc}\lambda^c$$

with the structure constants of the SU(3)-Lie algebra f^{abc} .

• Local gauge transformations are given via:

$$\Psi_q(x) \longrightarrow \Psi'_q(x) = U(x)\Psi_q(x) = e^{ig_s \frac{\lambda^a}{2}\gamma^a(x)}\Psi_q(x)$$

while the Lagrangian is defined as:

$$\mathcal{L}_{QCD} = -rac{1}{4}F^a_{\mu
u}F^{a\mu
u} + \sum_q \overline{\Psi}_q(i\gamma^\mu D_\mu - m_q)\Psi_q$$

with the covariant derivative (with $D_{\mu}\psi = U(D_{\mu}\psi)$):

• The field strength tensor is given via:

$$F^{a}_{\mu\nu} = \partial_{\nu}G^{a}_{\mu} - \partial_{\mu}G^{a}_{\nu} + g_{s}f^{abc}G^{b}_{\mu}G^{c}_{\nu}$$

 Within the fundamental SU(3) representation, the quark-fields are sorted into tripletts using the quantum number: Colour ("red", "green", "blue"):

Introduction of creation and annihilation operators within the SU(3)_C colour-tripletts:

47

• Here, the three dimensional Gell-Mann matrices are used (which are defined analogously to the Pauli matrices of the SU(2)):

$$\begin{split} \lambda_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \ \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ (g \longleftrightarrow r) \\ \lambda_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \ \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \ (r \longleftrightarrow b) \\ \lambda_6 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; \ \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \ (b \longleftrightarrow g) \end{split}$$

$$\lambda_{3} = \begin{pmatrix} r & g & b \\ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{\bar{r}}{\bar{g}} (couples \ r\bar{r}, -g\bar{g})$$

$$\lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} r & g & b \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \stackrel{\bar{r}}{\bar{g}} (couples \ r\bar{r}, g\bar{g}, -2b\bar{b}).$$

• Interaction part of the QCD-Lagrangian:

$$\mathcal{L}_{WW}(SU(3)_{C}) = -g_{s}(\overline{\Psi}\gamma^{\mu}\frac{\lambda^{a}}{2}\Psi)G_{\mu}^{a}$$

$$= -\frac{g_{s}}{\sqrt{2}} \begin{bmatrix} \overline{\Psi}\gamma^{\mu}I_{C}^{+}\Psi(g\bar{r})_{\mu} + \overline{\Psi}\gamma^{\mu}I_{C}^{-}\Psi(r\bar{g})_{\mu} \\ + \overline{\Psi}\gamma^{\mu}V_{C}^{+}\Psi(r\bar{b})_{\mu} + \overline{\Psi}\gamma^{\mu}V_{C}^{-}\Psi(b\bar{r})_{\mu} \\ + \overline{\Psi}\gamma^{\mu}U_{C}^{+}\Psi(b\bar{g})_{\mu} + \overline{\Psi}\gamma^{\mu}U_{C}^{-}\Psi(g\bar{b})_{\mu} \\ + \frac{1}{\sqrt{2}}\overline{\Psi}\gamma^{\mu}\lambda^{3}\Psi G_{\mu}^{3} + \frac{1}{\sqrt{2}}\overline{\Psi}\gamma^{\mu}\lambda^{8}\Psi G_{\mu}^{8} \end{bmatrix}$$

with the eight gluon fields:

$$g_{\mu 1} = (g\bar{r})_{\mu} = \frac{1}{\sqrt{2}}(G_{\mu}^{1} - iG_{\mu}^{2}),$$

$$g_{\mu 2} = (r\bar{g})_{\mu} = \frac{1}{\sqrt{2}}(G_{\mu}^{1} + iG_{\mu}^{2}) = \overline{g}_{\mu 1},$$

$$g_{\mu 4} = (r\bar{b})_{\mu} = \frac{1}{\sqrt{2}}(G_{\mu}^{4} + iG_{\mu}^{5}),$$

$$g_{\mu 5} = (b\bar{r})_{\mu} = \frac{1}{\sqrt{2}}(G_{\mu}^{4} - iG_{\mu}^{5}) = \overline{g}_{\mu 4},$$

$$g_{\mu 6} = (b\bar{g})_{\mu} = \frac{1}{\sqrt{2}}(G_{\mu}^{6} - iG_{\mu}^{7}),$$

$$g_{\mu 7} = (g\bar{b})_{\mu} = \frac{1}{\sqrt{2}}(G_{\mu}^{6} + iG_{\mu}^{7}) = \overline{g}_{\mu 6},$$

$$g_{\mu 3} = \frac{1}{\sqrt{2}}(r\bar{r} - g\bar{g}) = G_{\mu}^{3} \text{ (colour neutral)},$$

$$g_{\mu 8} = \frac{1}{\sqrt{2}}(r\bar{r} + g\bar{g} - 2b\bar{b}) = G_{\mu}^{8} \text{ (colour neutral)}.$$

- Obtain eight colour charge operators from the $3_C \otimes \overline{3}_C = 1_C + 8_C$ of the SU(3)
- Exchange of a gluon changes die Colour quantum numbers not the flavour quantum numbers of quarks.
- Gluons do not exists as colour-singlets in the SU(3) (in contrast to U(3)).
 - Such states would couple to colourless states, Mesons (qq) and Baryons (qqq), and would induce strong and far ranged nuclear forces similar to the electromagnetic force
- Coloured particles (quarks and gluons) are bound to colour-singlet states (Mesonen and Baryons) and do not appear as free states (confinement)
 Example:

$$\pi^+ = rac{1}{\sqrt{3}}(u_rar{d}_{ar{r}} + u_gar{d}_{ar{g}} + u_bar{d}_{ar{b}})$$

• Motivation of colour quantum numbers:

• The new inner degrees of freedom of the SU(3)_C colour symmetry allow the construction of a antisymmetric wave function for the $\Delta^{++} = (u \uparrow u \uparrow u \uparrow)$ baryon (J^P = 3/2 and L = 0):

$$\chi_{C}(\Delta^{++}) = \frac{1}{\sqrt{6}} \varepsilon_{ijk} u_{i} u_{j} u_{k}$$

- Forbidden without colour charge due to Pauli's principle
- Hadronic cross section in e^+e^- annihilation:

$$R = \sigma(e^+e^- \to \sum_{q(E_{CM} > 2m_q)} q\bar{q}) / \sigma(e^+e^- \to \mu^+\mu^-) \qquad e^- \qquad \gamma \qquad q_{r,g,b}$$
$$= N_C \cdot \sum_{q(E_{CM} > 2m_q)} Q_q^2 \qquad e^+ \qquad t \qquad \bar{q}_{\bar{r},\bar{g},\bar{b}}$$

Is thus N_C = 3 (number of colour charges) times higher than the leptonic cross section.

Motivation of colour quantum numbers:

• Decay of the π^0 into two photons:

 $\Gamma\left(\pi^{0} \to \gamma\gamma\right) \sim N_{C}^{2}$

- $\pi^{0} \left(\begin{array}{c} u, d \\ \bar{u}, \bar{d} \end{array} \right) \xrightarrow{\gamma} \gamma$ $\pi^{0} = u\bar{u} + d\bar{d}$
- Renormalizability of the electroweak interactions:
 - Divergent terms (appearing at higher orders perturbation) for interactions between two vector currents and one axial vector current are canceled if

$$\sum_{f} Q_{f} = \sum_{\ell} Q_{\ell} + N_{C} \cdot \sum_{q} Q_{q} = 0$$

Holds true (i.e. if quark and lepton contribution cancel each other).

 Z^0_λ

Origin of particle masses

- While the electromagnetic interaction has an infinite range, the weak interaction is short ranged
 - i.e. the weak interaction must be mediated by **massive gauge bosons**
- Explicite mass terms of gauge bosons (described by Proca equation) violate the local gauge symmetry of the Lagrangian
- Explicite mass terms of fermions (described by Dirac equation) violate the global SU(2), gauge symmetry
- However, gauge symmetry is necessary to cancel divergences in every order of perturbation theory i.e. renormalizability of the electroweak theory (similar to QED)
- Solution: Introduce spontaneous symmetry breaking (SSB) of the vacuum expectation value of the field theory
 - However, the gauge symmetry of the full Lagrangian is conserved

Origin of particle masses

• Higgs mechanism:

- \circ Constructed analogously to 2nd order phase transitions in solid matter state physics: SSB below a critical temperature T_c
 - In particle physics:
 - Full symmetry of vacuum recovered at high energies/temperatures
 - I.e. phase transition, SSB, happened during the cooling of the expanding early universe

• Goldstone's theorem:

- The spontaneous breaking of a continuous symmetry leads to the existence of a massless scalar ("**Nambu-Goldstone boson**")
 - Examples:
 - The longitudinal polarisation components of the W- and Z- bosons correspond to the Goldstone bosons of the spontaneously broken part of the electroweak symmetry $SU(2) \otimes U(1)$

- Goldstone bosons are excitations of the field (in the direction of the broken symmetry)
 - Example:
 - Quasiparticles in solid state physics (such as phonons)
- In case of a spontaneously broken local gauge symmetry, the goldstone bosons are "eaten-up" by the gauge fields (unitary transformation)
 - This process provides the longitudinal polarisation states to the gauge bosons and a mass term
- Higgs mechanism is introduced analogously to the Meißner-Ochsenfeld effect:
 - Local U(1) phase symmetry is spontaneously broken in the ground state:
 - Photon field obtains an effective mass as it is dampened due to interactions with Cooper pairs
 - Independently proposed by research teams around:
 - Peter Higgs
 - François Englert & Robert Brout

• Introduce an additional complex scalar field within a $SU(2)_1$ - doublet:

$$egin{array}{cccc} Q & I_3 & Y = 2(Q-I_3) \ \Phi = egin{pmatrix} \Phi^+ \ \Phi^0 \end{pmatrix} egin{array}{cccc} +1 & +1 & +1 \ \Phi^0 \end{pmatrix} egin{pmatrix} 0 & -rac{1}{2} & +1 \ & +1 \end{array}$$

which fulfills the Klein-Gordon equation and is described by a $SU(2) \times U(1)$ gauge invariant Lagrangian of the form:

$$\mathcal{L}_{\mathrm{Higgs}} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - V(\Phi^{\dagger} \Phi)$$

with the covariant derivative

$$D_{\mu} = \partial_{\mu} \cdot \mathbb{1} + ig' Y B_{\mu} \cdot \mathbb{1} + i \frac{g}{2} \vec{\sigma} \cdot \vec{W}_{\mu}$$

Self coupling parameter

60

and the potential ($\lambda > 0$):

$$\mathcal{N}(\Phi^{\dagger}\Phi)=\mu^2(\Phi^{\dagger}\Phi)+\lambda(\Phi^{\dagger}\Phi)^2$$

For μ² < 0, the ground state (kinetic energy T = 0 and V = V_{min}) is at a non-zero value of the scalar field

$$\frac{\partial V}{\partial |\Phi|} = 2\mu^2 |\Phi_0| + 4\lambda |\Phi_0|^3 = 0$$
$$\implies |\Phi_0| = \sqrt{\frac{-\mu^2}{2\lambda}} =: \frac{v}{\sqrt{2}}$$

where the vacuum expectation value of the Higgs field is:

$$\mathsf{v} = rac{|\mu|}{\sqrt{\lambda}} pprox 246\,\mathrm{GeV}$$

• The ground state

$$\Phi_0 = \left(\begin{array}{c} 0\\ v/\sqrt{2} \end{array}\right)$$

spontaneously breaks the $SU(2)_{L} \times U(1)_{Y}$ symmetry.

• The weak isospin doublet of the Higgs field can also be written as:

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i \Phi_2 \\ \Phi_3 + i \Phi_4 \end{pmatrix}$$

• A fluctuation around the minimum v is written as:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i\Phi_2 \\ \Phi_3 + i\Phi_4 \end{pmatrix} \Rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) + i\zeta(x) \end{pmatrix}$$
(19)

- The scalar field h(x) describes a physical Higgs boson, while ζ is an unphysical massless state (Goldstone boson)
- Rewriting the original Lagrangian in terms of the quantum fields h and ζ yields:

$$\mathcal{L}=rac{1}{2}\left(\partial^{\mu}h\partial_{\mu}h
ight)+rac{1}{2}\left(\partial^{\mu}\zeta\partial_{\mu}\zeta
ight)-\lambda extsf{v}^{2}h^{2}-\lambda extsf{v}h\left(h^{2}+\zeta^{2}
ight)-rac{\lambda}{4}(h^{2}+\zeta^{2})^{2}$$

where the h field obtained a mass $m = \sqrt{2\lambda v^2}$

Higgs potential

- The Higgs potential has the shape of a "mexican hat"
- Higgs boson is a radial excitation of the field

Gauge boson masses

- The gauge bosons obtain their masses via coupling to the Higgs field:
 - Inserting the vev component from equation (19) into the covariant derivative:

$$D_{\mu}\Phi = \left(\partial_{\mu} \cdot \mathbb{1} + i\frac{g'}{2}B_{\mu} \cdot \mathbb{1} + i\frac{g}{2}\vec{\sigma} \cdot \vec{W}_{\mu}\right)\Phi$$
$$D_{\mu}\Phi = \partial_{\mu}\begin{pmatrix}\Phi^{+}\\\Phi_{0}\end{pmatrix} + \frac{i}{2}\begin{pmatrix}gW_{\mu}^{3} + g'B_{\mu} & \sqrt{2}gW_{\mu}^{+}\\\sqrt{2}gW_{\mu}^{-} & -gW_{\mu}^{3} + g'B_{\mu}\end{pmatrix}\begin{pmatrix}\Phi^{+}\\\Phi_{0}\end{pmatrix}$$

leads to a term

$$+\frac{i}{2}\begin{pmatrix}gW_{\mu}^{3}+g'B_{\mu}&\sqrt{2}gW_{\mu}^{+}\\\sqrt{2}gW_{\mu}^{-}&-gW_{\mu}^{3}+g'B_{\mu}\end{pmatrix}\begin{pmatrix}0\\\frac{v}{\sqrt{2}}\end{pmatrix}$$

which results in:

$$\mathcal{L}_{\text{partial}} = \frac{1}{4} g^2 v^2 W_{\mu}^+ W_{\mu}^- + \frac{1}{8} v^2 \left(-g W_{\mu}^3 + g' B_{\mu} \right)^2$$
(20)

Gauge boson masses

- Studying equation (20), we can identify:
 - The W boson mass term:

$$m_W = \frac{1}{2}gv$$

• The Z boson mass term:

$$m_Z = rac{1}{2} \left(g^2 + g'^2 \right)^{rac{1}{2}} v = rac{m_W}{\cos heta_W}$$

- \circ A^{μ} remains massless
- Before the interaction with the Higgs field:
 - 8 degrees of freedom (2 polarisation states for each W, B)
 - 4 degrees of freedom from the Higgs field
- After the interaction with the Higgs field:
 - \circ 9 degrees of freedom (3 polarisation states for each W⁺, W⁻, Z)
 - \circ 2 degrees of freedom (2 polarisation states for A^µ)
 - 1 degrees of freedom for the Higgs boson h

With: $Z_{\mu} = \cos \theta_{W} W_{\mu}^{3} - \sin \theta_{W} B_{\mu}$ $A_{\mu} = \sin \theta_{W} W_{\mu}^{3} + \cos \theta_{W} B_{\mu}$ $\tan \theta_{W} = \frac{g'}{g}$

and the general expressions for the mass terms of a charged spin-1 and a real spin-1 field, respectively:

$$m^2 V^\dagger_\mu V^\mu$$
 and $rac{1}{2} m^2 V_\mu V^\mu$

Yukawa coupling

- The Dirac equation is only invariant under SU(2) transformations of the left-handed fermion doublets, if the two constituents of a given doublet have the same mass (i.e. m_e = m_v)
 - To keep gauge invariance, Higgs-Mechanism is also used to generate fermions masses
- The Yukawa interaction describes the coupling between the Higgs field and the fermion fields:

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{f} g_{f} \left[\left(\overline{L}_{f} \Phi \right) \psi_{fR} + \overline{\psi}_{fR} \left(\Phi^{\dagger} L_{f} \right) \right]$$

where the strength of the Higgs-fermion coupling g_f is proportional to the mass of the fermion:

$$g_f = \frac{\sqrt{2} \cdot m_f}{v}$$

Higgs boson discovery

- Discovery of a new particle compatible with the SM Higgs boson was published by the ATLAS and CMS collaborations in the Summer of 2012
 - Considering the following decay modes:

 - $\blacksquare \quad h \to ZZ^* \to \ell\ell\ell\ell \text{ (ATLAS & CMS)}$
 - $\blacksquare \quad h \to WW^* \to \ell \nu \ell \nu \text{ (ATLAS)}$

Higgs boson discovery

- Discovery of a new particle compatible with the SM Higgs boson was published by the ATLAS and CMS collaborations in the Summer of 2012
 - Considering the following decay modes:

 - $\blacksquare \quad h \to ZZ^* \to \ell\ell\ell\ell \text{ (ATLAS & CMS)}$

Other channels such as $h \to \tau \tau$ were not sensitive enough back then

68

Higgs boson discovery

- The discovery of the Higgs boson concluded a search lasting several decades
 - Previous inconclusive searches at LEP and TeVatron
- Resulted in Nobel prizes for: François Englert and Peter W. Higgs (for the prediction of the Higgs boson)

Quark-flavour mixing

- Mass eigenstates and flavour eigenstates of down-type quarks are different to the weak interaction
 - The mixing between the down-type quarks is described by an unitary matrix i.e. the so-called **Cabibbo-Kobayashi-Maskawa (CKM)-matrix:**

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix} \qquad \text{with:} \quad V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{tc} & V_{tb} \end{pmatrix}$$

• The matrix elements weight the transition probability for decays (via a weak charged current) of an up-type quark into a down-type quark (or vise versa)

$$u \leftrightarrow d' = V_{ud}d + V_{us}s + V_{ub}b$$

- The masses and mixings of quarks have a common origin in the Standard Model as they arise from the Yukawa interactions with the Higgs field
- Elements of the CKM matrix are not predicted by the SM, but have to be determined experimentally

Quark-flavour mixing

$ V_{ud} = 0.97446 \pm 0.00010$	via nuclear β -decays
$ V_{us} = 0.22452 \pm 0.00044$	via semileptonic kaon decays (e.g. $K ightarrow \pi e u_e$)
$ V_{ub} = 0.00365 \pm 0.00012$	via semileptonic B decays (e.g. $B ightarrow X_u \ell u_\ell)$
$ V_{cd} = 0.22438 \pm 0.00044$	extracted from semileptonic charm decays
$ V_{cs} = 0.97359^{+0.00010}_{-0.00011}$	from semileptonic D or leptonic D_s decays
$ V_{cb} = 0.04214 \pm 0.00076$	semileptonic decays of B mesons to charm
$ V_{td} = 0.00896^{+0.00024}_{-0.00023}$	via $B-\overline{B}$ oscillations
$ V_{ts} = 0.04133 \pm 0.00074$	via $B-\overline{B}$ oscillations
$ V_{tb} = 0.999105 \pm 0.000032$	from top quark decays
• The CKM matrix can be parameterized by three mixing angles and the CP-violating complex phase. Of the many possible conventions, a standard choice has become:

$$V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$, and δ is the phase responsible for all CP-violating phenomena in flavor-changing processes in the SM. The angles θ_{ij} can be chosen to lie in the first quadrant, so s_{ij} , $c_{ij} \ge 0$.

• An alternative representation of the CKM matrix is the Wolfenstein parameterisation:

$$V_{\mathcal{CKM}}=\left(egin{array}{ccc} 1-rac{\lambda^2}{2} & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-rac{\lambda^2}{2} & A\lambda^2\ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{array}
ight)+\mathcal{O}(\lambda^4)$$

• The Wolfenstein parameters can be translated via:

$$s_{12} = \lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}} \qquad s_{23} = A\lambda^2 = \lambda \left|\frac{V_{cb}}{V_{us}}\right| \qquad s_{13}e^{i\delta} = V_{ub}^* = A\lambda^3 \left(\rho + i\eta\right)$$

• The unitarity of the CKM matrix imposes:

$$\sum_{i} V_{ij} V_{ik}^* = \partial_{jk}$$

 $\sum_{j} V_{ij} V_{kj}^* = \partial_{ik}$

- The six vanishing combinations can be represented as triangles (i.e. by the **unitarity triangles**) in a complex plane
- The most commonly used unitarity triangle arises from

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

by dividing each side by the best-known one, $V_{cd} V_{cb}^*$

• Phases of CKM elements:

$$\beta = \Phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\alpha = \Phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\gamma = \Phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

• Some last remarks:

- The main consequences of the quark-flavour mixing in weak charged interactions are:
 - 1) Quark-flavour oscillations
 - 2) Violation of the CP symmetry

 \rightarrow Will come back to studies on quark-flavour oscillation and CP violation during the lectures next semester

• Flavour changing neutral currents (i.e. FCNC) do not appear in tree level processes within the SM