Workshop on Energy Calibration of the ATLAS Calorimeters, 21-24 July 02

Hadronic Energy Calibration of the H1 Experiment

Jörg Marks University of Heidelberg

for the

H1 Collaboration

Outline

- ✓ H1 LAr calorimeter
- ✓ Hadronic energy reconstruction
- ✓ Results of CERN test beam measurements
- ✓ LAr Purity monitoring
- \checkmark HV curves with μ 's
- ✓ Hadron calibration in ep data
- New energy weighting method
- ✓ Summary

The H1 LAr Calorimeter

8 self supporting wheels

➢ 8 fold structure for each wheel

Readout cell structure

Jörg Marks

Hadronic part Granularity: 50 - 2000 cm² Long. Segmentation: 4-6 Number of chan.: 13568 $\sigma(E_h)/E_h \approx 50\%/\sqrt{E_h} \oplus 2\%$ Wheel **Electromagnetic part** suppo rail Granularity: 10 -100 cm² Long. Segmentation: 3-4 Number of chan.: 30784 $\sigma(E_e)/E_e \approx 11\%/\sqrt{E_e} \oplus 1\%$

Electronic Calibration and Noise

Electronic Calibration

- Two calibration systems: cold and warm (as backup solution)
- ✤ Stability within 10⁻³
- Online charge conversion in the front end DSPs using calibration data from 3rd order polynomial fits

➢ Noise

- Special noise suppression including negative noise contributions
- 1 σ_{noise} values: Central Barrel Inner Forward
 Electromagnetic part 30 MeV / 0.25 mips 15 MeV / 0.15 mips
 Hadronic part 30 MeV / 0.15 mips 24 MeV / 0.15 mips
- Topological noise suppression
- ✤ H1 MC simulations include measured noise from random triggers

CERN Test Beam Measurements

> Extensive test program at CERN SPS with e,π and μ beams

- Measurements with calorimeter prototypes as proof of principle
- Calibration runs with stacks of each final H1 module

 \clubsuit Tests of z and ϕ crack regions

Determine calibration constants of the electromagnetic scale

Energy Measurement of π 's

> Measurement of the e/π ratio

• $e/\pi > 1 \implies$ non compensating Calorimeter $f_{em} \sim \log E_{beam} \Rightarrow$ non linear response * π^0 fluctuations cause non gaussian contribution to the energy resolution Energy weighting \Rightarrow equalize the response of the electromagnetic and hadronic component in the shower software method which requires fine granularity of the calorimeter

Energy Weighting in H1 (1)

> Identify the primary electromagnetic component ($E_{cluster}$ > 1 GeV)

- Energy in the EMC
- Fraction of energy in the first layer
- Fraction of energy in the 4 most energetic cells
- Energy weighting of hadronic objects
 - ✤ Hadronic cluster are prominent cluster ($\Sigma (E_i/\sigma_{noise})^2)^{1/2} > 8$) penetrating deeply into the calorimeter
 - Hadronic objects are formed by hadronic cluster together with cells in a cylinder of r_{EMC}< 25 cm and r_{HAC}< 50 cm in the direction of the I.P.</p>
 - Apply the weighting function to the cells of the hadronic objects

Energy Weighting in H1 (2)

Weighting parameters

- generated using jet data of detailed MC simulations
- different for EMC and HAC
- parametrization of the jet energy E_{group} (determined in 10° cones) and of θ

Hadronic energy reconstruction at low energies

Linear correction for E_{group} < 7 GeV using the measured e/π ratio:

$$E_F = \omega \cdot E_I^i$$

 $\omega^{HAC} = 1.608$ $\omega^{EMC} = 1.353$

 Smooth transition between both methods for 7 GeV < E_{group} < 10 GeV

CERN Test Beam - π Results

\succ Energy measurement of π 's

Deviation of the MC simulation from data (final energy scale)

Reconstructed energy on the E_0 and E_F scale

CERN Test Beam - π Results

> Energy resolution after energy weighting, Inner Forward calorimeter

Energy weighting compared to a linear calibration (jets, detailed MC)

- Constant term is reduced by factor 2
- ✤ Sampling term improves by ~30 %

Jörg Marks

CERN Test Beam – z, ¢ Cracks

> CB2/CB3 z crack in a 30 GeV π beam

Jörg Marks

- z crack is almost pointing to the interaction vertex
- Crack correction

$$E_{loss}^{j} = \beta \cdot f_{loss}^{j} \cdot \frac{E_{r}^{j} \cdot E_{l}^{j}}{E_{r}^{j} + E_{l}^{j}}$$

$$\beta_{em} \neq \beta_{had}$$

 Position independent response after the crack correction

Response is well described by the simulation

Crack correction parameters determined for hadrons are used for both shower components

LAr Purity Monitoring System

Aim: control longterm stability of the LAr signal

Purity measurements by 10 LAr ionization chambers (²⁰⁷Bi and ²⁴¹Am)

sources) inside the cryostat

Determine the ionization charge Q and relate the mean free path λ_e

> LAr temperature effect for ${}^{207}Bi$ $\Delta Q/Q = - \kappa \Delta T$, $\kappa \cong 1.5 \% / K^{0}$

LAr temperature oszillation in 24 h operation: $\frac{+0.1}{-0.2}K^{o}$

LAr Impurity Measurement (1)

> Impurity N_{H1} of a ²⁰⁷Bi probe converted from the measured charge

During the CERN tests there was a continuous release of impurities into the LAr at the % level / month (no oxygen pollution)

This was a factor 100 larger than the observed measurements in H1

LAr Impurity Measurement (2)

\blacktriangleright Average impurities N_{H1} in H1 from 91 to 98 using HV curves

Convert HV curves into impurity curves using a relation between the mean free path and the electrical field determined from the data

Obtain the average impurity for fields 0.35 cm/kV $< E^{-1} < 0.9$ cm/kV

LAr Purity Monitoring in ep Data

Signal degradation directly observed in NC DIS high Q² data

Measure $E_{2\alpha}/E_e$ vs time

The sensitivity is clearly on the ‰ level

Use data for the correction

For physics analysis corrections are needed when combining data from different running periods

Still unknown is the sensitivity of the data to temperature gradients T gradients are stable \Rightarrow covered within the octant wise offline calibration

Charge Collection Efficiency

Measurement of high voltage curves with cosmic and beam halo μ's
 Determine the charge collection efficiency by a fit to

$$\varepsilon(U_{HV}) = \frac{Q(U_{HV})}{Q_0} = 2\frac{\alpha U_{HV}}{pd_{gap}^2} \left[1 - \frac{\alpha U_{HV}}{pd_{gap}^2} \left(1 - e^{-\frac{pd_{gap}^2}{\alpha U_{HV}}} \right) \right]$$

Before the beam operation of H1 in 91/92: (at E = 1500 kV)

$$\varepsilon = 0.944 \pm 0.014$$

 $p = 0.55 \pm 0.14 \, ppm$

- Derive wheel wise calibration
 coefficients in EMC and HAC
 using cosmic and beam halo μ's
 Difficult: low signal/noise
- Long term stability checks inside modules

Calibration with NC DIS Data

 $Q^2 = -q^2$ resolving power of the probe y = $(P \cdot q) / (P \cdot l')$ inelasticity parameter x = $-q^2 / 2(P \cdot q)$ fraction of p momentum

Jörg Marks

Measurements and Constraints

Four measurements:

Jöra Marks

- Energy and angle of the scattered lepton and the hadronic final state
- ✤ Inclusive hadronic angle

$$\tan\frac{\theta_{had}}{2} = \frac{(E - p_z)^{had}}{p_t^{had}}$$

✤ 2 variables describe kinematics

Over constraint system offers calibration and checking possibilities

- ✤ Transverse momentum (P_t) balance: $P_t^e = P_t^{had}$
- ♦ Longitudinal momentum (E-p_z) balance: $(E-p_z)^e + (E-p_z)^{had} = 2E^e_{beam}$
- ↔ Double angle method: predict E^{e} , E^{had} from measured (θ_{e} , θ_{had})

Cluster Track Combination

The hadronic final state is measured using calorimeter energy depositions and low momentum tracks to improve the response.

Cluster track combination

Extrapolate tracks (p < 2 GeV) in the central area to the calorimeter and replace $E_{cluster}$ within a radius (r_{em} = 25cm, r_{had} =50cm) by p_{track}

$$y_{had} = \frac{\sum_{i} (E^{i} - p_{z}^{i})}{2E_{beam}}$$

Isolated low energy calorimetric deposits are classified as noise

Calibration Fundamentals

Calibrate the electron using the NC double angle e energy prediction

transverse + longitudinal momentum balance

Statistical techniques on large samples to establish energy and position dependent hadron calibration

Hadronic Energy Calibration (1)

Calorimeter calibration approach

Determine calibration coefficients for different hardware regions of the LAr calorimeter in order to describe data / MC of various observables (p_t , E- p_z , y, Q²,...) in different kinematic regimes

✤ Lagrange Method

$$L = \sum_{i=1}^{events} \frac{1}{\sigma_i^2} \left(p_t^e - p_t^{track} - \sum_{j=1}^{M} p_{t_i}^j \cdot \alpha_j \right)^2 \to min$$

120 coefficients (wheel, octant)

✤ Iterative Method

$$\Delta_j = 1 - \sum_{i=1}^{events} \delta^i W_j^i$$

$$\begin{array}{l} p_{\perp}{}^{\text{LAr}} =: p_{t} \, \text{projected onto the electron direction} \\ p_{\perp}{}^{\text{LAr}} = \ \Sigma_{i} \ p_{t}{}^{i} \bullet \cos(\phi^{i} - \phi^{el}) \\ w_{ev}^{j} = \ p_{t}{}^{j} / p_{t} \quad \text{fractional} \ p_{t} \quad \text{in wheel j} \\ \delta^{ev} = \ p_{\perp}{}^{\text{LAr}} / p_{t} \quad \text{event pull} \end{array}$$

 $<\Delta_i^{\text{data}} > / < \Delta_i^{\text{MC}} > \rightarrow 15 \text{ coefficients (wheel wise)}$

Hadronic Energy Calibration (2)

ightarrow p_t dependence of the description of the data by the MC

After the correction of the p_t dependence the hadronic energy measurement for data and MC agrees within 2 %

Final Calibration

E-p_z measurement

p_t measurement

Hadronic Energy Calibration (3)

Alternative approach

 (p_t, θ) dependent calibration using the jets of the hadronic final state

Select NC DIS high Q² (1+1) jet events
Adjust < p_t^{had} / p_t^{da} >^{data} and < p_t^{had} / p_t^{da} >^{MC} in θ_{jet} ranges
Fit p_t^{balance} = F (θ_{jet}, p_t^{da}) for data and MC
Correct the quantities of each jet iterating with F (θ_{jet}, p_t^{da})
The method provides an absolute hadronic scale

The procedure yields equivalent precision

ATLAS Calorimeter Calibration Workshop

Hadronic Energy Calibration (4)

- Improved precision of the hadronic scale including all e⁺p NC DIS data
 - 12 GeV < p_t^{had} < 50 GeV and γ_{had} > 15°

- Correct the p_t dependence for data and MC in bins of γ_{had}
 E-p_z and p_t measurement
 - well described within ±1%
- 1% correlated error from electron measurement

♦ Wheel dependent calibration from y balance
 Adjust y^{had} / y^e for data and MC in different areas of the
 LAr calorimeter → equivalent results

Dijets in Photoproduction

Jet definition

Dijet cross section measurement Hadronic energy calibration is an important aspect

Large transverse energy selection E_t (1. Jet) > 25GeV E_t (2. Jet) > 15GeV

Inclusive $k_{\!\perp}$ algorithm using energy deposits in the calorimeters and low momentum tracks

Application of the NC DIS high Q² calibration
 As a cross check: select a NC DIS sample with E^e > 15 GeV and show
 that p^{had} / p^e of the data is described within ± 2% by MC

 Energy scale error in the dijet data

Deviations for subselections and various dependencies < 2 %

Dijet Data – Energy Calibration (1)

Jet Jet balance
E_{t,Jet1} / E_{t,Jet2}

 $\begin{array}{l} \clubsuit \ E_{t,Max} \ dependence \\ \clubsuit \ \eta_{Jet1} \ dependence \end{array}$

 $x_{\gamma} > 0.8$ (direct processes)

x_γ < 0.8 (resolved processes)

Dijet Data – Energy Calibration (2)

- ➢ Jet-Rest balance
 E_{t,Max}/ E_{t,Rest}
 - $\mathbf{E}_{t,Max}$ dependence $\mathbf{\eta}_{Jet 1}$ dependence

Dijet Data – Energy Calibration (3)

➤ y balance

Compare y_{el} measured with the electron and y_{JB} reconstructed from the hadronic final state

Dijet Data – Calibration Results

Relative difference between measured and theoretical cross sections
Compare different error contributions to the cross section measurement

Hadronic energy scale: the MC's describe the data within ± 2 %.

energy scale uncertainties

Jörg Marks

renormalization and factorization scale uncertainties NLO calc.

New Energy Weighting Scheme (1)

Weighting procedure

on th

Non iterative procedure using tabulated correction factors $\boldsymbol{\omega}$

e cell level:
$$E_w = \omega (E_i^0 / Vol_i, E_{group}) \cdot E_i^0$$

- Evaluate for each cell the energy density (E_0^i / Vol_i)
- Determine the energy scale E_{group} for the weighting procedure by searching for groups of neighbour clusters within an η,φ – grid
- Apply the correction factor to each cell of the group E_{group} depending on the energy density

Determination of the weighting factor tables

- Use single π events simulated in H1 with detailed simulation (low cuts, energy range [50MeV,300GeV], angular range of the LAr calorimeter)
 The scale of the weighting is determined by the leading energy group E_{group}
- The true energy Eⁱ_{True} and the measured energy Eⁱ₀ enter 2 D histogramms in the energy density (log₁₀ (Eⁱ₀ / Vol_i)) and the group energy (log₁₀ (E_{aroup}))

New Energy Weighting Scheme (2)

Weighting factors

Jörg Marks

Wheel wise weighting factor tables for the electromagnetic and hadronic part of the LAr calorimeter

Noise correction

Noise cuts on read out level → missing reconstructed energy (few % level at high energies and up 20% at low energies)

Dead material correction
 As already discussed

Final calibration using NC DIS data Determine wheel wise factors by adjusting the average <p^t_{had} / p^t_e > for both data and MC to 1

New Energy Weighting Results (1)

\succ Single π simulation

- Improved linearity at low E
- Improved resolution

> NC DIS high Q² data

 Improved resolution and gaussian shape in p_t balance

New Energy Weighting Results (2)

Jet energy dependence of p^t_{had} / p^t_e
 Response improved at low energies

à PT.had 1.3 Data (Old Energy Weighting 12 1.1 0.9 0.8 07 0.6 0.5 40 100 120 Eint [GeV] ON 1.25 1.2 1.15 1.1 1.05 0.95 0.9 0.85 0.8 0.75 100 120 E_{int} [GeV] Cluster track combination needed

Wheelwise resolution in p^t_{had} / p^t_e
 Improved resolution at low E

No p^t dependence (p^t_{had}/p^t_e)_{MC/data}

Summary

It was a long way to go for H1 from the first beam test setup in 1986 to the 1.4 % data / MC description of the hadronic final state in Neutral Current DIS in 2002.

Good Luck to the ATLAS calorimeter group

